Rationale for the choice of an antibiotic for urinary tract infections with an emphasis on the environmental safety of therapy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Difficulties in prescribing antibiotics for lower urinary tract infections (UTI) are associated with a fact that such patients can be treated not only by urologists, but also by general practitioners, internists, pediatricians, and gynecologists. Therefore, it is important to adapt the practical recommendations for the treatment of cystitis for different medical disciplines. When creating clinical guidelines, experts take into account the different factors in choosing antibiotic therapy. First of all, pharmacokinetics is of importance and drugs with renal excretion should be preferred. Secondly, the natural activity of the antibiotic against the pathogens, which cause cystitis, has to be considered. In uncomplicated infections, E. coli predominates, while in complicated and recurrent infections E. coli and other enterobacteria are commonly isolated, as well as Enterococci. In addition, local resistance pattern is reviewed. In the Russian Federation E. coli has minimal resistance to nitrofurans and fosfomycin. Lastly, antibiotics can negatively affect the gastrointestinal and urinary tract microbiota and contribute to the increase of antibiotic resistance and the selection of antibiotic-resistant strains, therefore the environmental safety of therapy should be considered. The effect of antibiotics on the resident flora of the gastrointestinal tract, urinary tract and vagina is called collateral effect, or concomitant (parallel) damage, and it may exceed the therapeutic effect of some antibiotics. Cephalosporins and fluoroquinolones can cause ecologically unfavorable effects with the risk of selection of resistant strains; therefore, these drugs are currently considered as second-line agents for UTI. When choosing an antibiotic, preference should be given to drugs with the narrow spectrum and minimal collateral damage, i.e., the principle of "minimum sufficiency” is of importance. Nitrofurans and fosfomycin trometamol are the optimal drugs in terms of efficiency and environmental safety in UTI. WHO experts consider nitrofurans as the most environmentally safe antibiotics with a minimally sufficient spectrum of activity. The environmental safety of antimicrobial therapy is an important component of preventing antibiotic resistance at the global and local levels.

Full Text

Restricted Access

About the authors

S. V Yakovlev

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: antimicrob@yandex.ru
Ph.D., MD, professor at the Department ofHospital Internal Medicine No 2 Moscow, Russia

M. P Suvorova

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: margarita-suv@yandex.ru
Ph.D., associate professor at the Department of Hospital Internal Medicine No 2 Moscow, Russia

References

  1. Яковлев С.В., Сидоренко С.В., Рафальский В.В. Антибиотико-резистентность как угроза национальной безопасности: фокус на мероприятия в амбулаторно-поликлиническом звене здравоохранения. Резолюция. Вестник практического врача. 2014;3: 8-13
  2. Стратегия и тактика рационального применения антимикробных средств в амбулаторной практике: Евразийские клинические рекомендации / под ред. С.В. Яковлева, С.В. Сидоренко, В.В. Рафальского, Т.В. Спичак. М.: Изд-во «Пре100 Принт», 2016. 121 с
  3. WHO Global Strategy for Containment of Antimicrobial Resistance. World Health Organization, 2001. (Assessed at http://www.who.int/drugresistance/ WHO_Global_Strategy_English.pdf?ua=1).
  4. ECDC/EMEA Joint Technical Report: The bacterial challenge: time to react, September 2009 (доступно по ссылке: http://ecdc.europa.eu/en/publications/ Publications/0909_TER_The_Bacterial_Challenge_TimeJo_React.pdf).
  5. Стратегия предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 года. Распоряжение Правительства Российской Федерации от 25 сентября 2017 года, № 2045-р
  6. Цистит бактериальный у взрослый. Клинические рекомендации. Министерство здравоохранения РФ. https://cr.minzdrav.gov.ru/
  7. Gupta K., Hooton T.M., Naber K.G., Wullt B., Colgan R., Miller L.G., Moran G.J,. Nicolle L.E., Raz R., Schaeffer A.J., Soper D.E. Infectious Diseases Society of America; European Society for Microbiology and Infectious Diseases. International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis. 2011;52(5):e103-20. doi: 10.1093/cid/ciq257.
  8. Kranz J., Schmidt S., Lebert C., Schneidewind L., Vahlensieck W., Sester U., Fünfstück R., Helbig S., Hofmann W., Hummers E., Kunze M., Kniehl E., Naber K., Mandraka F., Mündner-Hensen B., Schmiemann G., Wagenlehner F.M.E. Epidemiologie, Diagnostik, Therapie, Prävention und Management unkomplizierter, bakterieller, ambulant erworbener Harnwegsinfektionen bei erwachsenen Patienten : Aktualisierung 2017 der interdisziplinären AWMF S3 Leitlinie. Urologe A. 2017;56(6):746-758. German. doi: 10.1007/s00120-017-0389-1.
  9. Bonkat G., Bartoletti R., Bruyere F., Cai T., Geerlings S.E., Köves B., Schubert S., Wagenlehner F. EAU Guidelines on Urological infections 2021. European Association of Urology. ISBN 978-94-92671-13-4. https://uroweb.org/guideline/urological-infections/.
  10. Stratchounski L.S., Rafalski V.V. Antimicrobial susceptibility of pathogens isolated from adult patients with uncomplicated community-acquired urinary tract infections in the Russian Federation: two multicentre studies, UTIAP-1 and UTIAP-2. Int J Antimicrob. 2006;28(Suppl 1):S4-9.
  11. Rafal’skii V.V., Strachunskii L.S., Krechikova O.I., Edel’shten I.A., Akhmetova L.I., Babkin P.A. et al. Resistance of ambulatory urinary infection pathogens according to the data of multicenter microbiological studies UTIAP-I and UTIAP-II. Urologiia. 2004;2:13-17 [Article in Russian].
  12. Rafal’skii V.V., Strachunskii L.S., Babkin P.A., Valenskaia V.S., Gabbasova L.A., Dmitrieva O.B. et al. Resistance of causative agents of uncomplicated urinary tract infections in Russi. Urologiia. 2006;5:34-37 [Article in Russian].
  13. Schito G.C., Naber K.G., Botto H., Palou J., Mazzei T., Gualco L., Marchese A. The ARESC study: an international survey on the antimicrobial resistance of pathogens involved in uncomplicated urinary tract infections. Int J Antimicrob Agents. 2009;34(5):407-413. doi: 10.1016/j.ijantimicag.2009.04.012.
  14. Palagin I.S., Sukhorukova M.V., Dekhnich A.V., Edelstein M.V., Perepanova T.S., Kozlov R.S. et al. Current state of antibiotic resistance of pathogens causing community-acquired urinary tract infections in Russia: «DARMIS» Study (2010-2011). Clin Microbiol Antimicrob Chemother. 2012;14 (4):280-303
  15. Rafalskiy V., Pushkar D., Yakovlev S., Epstein O., Putilovskiy M., Tarasov S., Glazunov A., Korenev S., Moiseeva E., Gorelysheva N. Distribution and antibiotic resistance profile of key Gram-negative bacteria that cause community-onset urinary tract infections in the Russian Federation: RESOURCE multicentre surveillance 2017 study. J Glob Antimicrob Resist. 2020;21:188-194. doi: 10.1016/j.jgar.2019.09.008
  16. The Sanford Guide to Antimicrobial Therapy 2021. Ed. By DN Gilbert, HF Chambers, MS Saag, AT Pavia, HW Boucher. 51st Edition. Antimicrobial Therapy, Inc., USA, 2021.
  17. The EUCAST database. https://mic.eucast.org/. Russian (База данных EUCAST. https://mic.eucast.org/).
  18. FDA updates warnings for fluoroquinolone antibiotics. http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm513183.htm
  19. European Medicines Agency. Fluoroquinolone and quinolone antibiotics: PRAC recommends restrictions on use. 5 October 2018. EMA/668915/2018.
  20. Ursell L.K., Haiser H.J., Van Treuren W., Garg N, Reddivari L., Vanamala J., Dorrestein P.C., Turnbaugh P.J., Knight R. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014;146(6):1470- 1476. doi: 10.1053/j.gastro.2014.03.001.
  21. Fujimura K.E., Slusher N.A., Cabana M.D., Lynch S.V. Role of the gut microbiota in defining human health. Expert Rev Anti Infect Ther. 2010;8(4):435-454. doi: 10.1586/eri.10.14.
  22. Zimmermann P., Curtis N. The effect of antibiotics on the composition of the intestinal microbiota - a systematic review. J Infect. 2019;79(6):471-489. doi: 10.1016/j.jinf.2019.10.008.
  23. Vervoort J., Xavier B.B., Stewardson A., Coenen S., Godycki-Cwirko M., Adriaenssens N., Kowalczyk A., Lammens C., Harbarth S., Goossens H., Malhotra-Kumar S. Metagenomic analysis of the impact of nitrofurantoin treatment on the human faecal microbiota. J Antimicrob Chemother. 2015;70(7):19899-19892. doi: 10.1093/jac/dkv062.
  24. Stewardson A.J., Gai'a N., Frangois P., Malhotra-KumarS., Delemont C., Martinez de Tejada B., Schrenzel J., Harbarth S., Lazarevic V.; SATURN WP1 and WP3 Study Groups. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin Microbiol Infect. 2015;21(4):344.e1-11. doi: 10.1016/j.cmi.2014.11.016.
  25. Gobernado M., Valdes L., Aids J.I., Gara'a-Rey C., Dal-Re R., Gara'a-de-Lomas J. Spanish Surveillance Group for Urinary Pathogens. Antimicrobial susceptibility of clinical Escherichia coli isolates from uncomplicated cystitis in women over a 1-year period in Spain. Rev Esp Quimioter. 2007;20(1):68-76.
  26. Saner F.H., Canbay A., Gerken G., Broelsch C.E. Kollateralschaden der Cephalosporine und Chinolone und Wege zu ihrer Reduktion [Collateral damage of cephalosporins and quinolones and possibilities for control]. Med Klin (Munich). 2009;104(2): 114-118. German. doi: 10.1007/s00063-009-1022-x.
  27. Paterson D.L. «Collateral damage» from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38 Suppl 4:S341-345. doi: 10.1086/382690.
  28. Kim J.Y., Sohn J.W., Park D.W., Yoon Y.K., Kim Y.M., Kim M.J. Control of extended-spectrum {betaj-lactamase-producing Klebsiella pneumoniae using a computer-assisted management program to restrict third-generation cephalosporin use. J Antimicrob Chemother. 2008;62(2):416-421. doi: 10.1093/jac/dkn164.
  29. Lee J, Pai H., Kim Y.K., Kim N.H., Eun B.W., Kang H.J., Park K.H., Choi E.H., Shin H.Y., Kim E.C., Lee H.J., Ahn H.S. Control of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children’s hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother. 2007;60(3):629-637. doi: 10.1093/jac/dkm225.
  30. Golikova M., Strukova E., Alieva K., Portnoy Y., Dovzhenko S., Kobrin M., Zinner S., Firsov A. Comparatine resistance studies using in vitro dynamic models: amoxicillin versus azithromycin against Streptococcus pneumoniae. ECCMID 2017, Poster P0251 (www.eccmid.org).
  31. Baquero F. Evolving resistance patterns of Streptococcus pneumoniae: a link with long-acting macrolide consumption? J Chemother. 1999;11 Suppl 1:35-43.
  32. Vanderkooi O.G., Low D.E., Green K., Powis J.E., McGeer A. Predicting antimicrobial resistance in invasive pneumococcal infections. Clin Infect Dis. 2005;40(9):1288-1297.
  33. Bonten M.J., Willems R., Weinstein R.A. Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis. 2001;1(5):314- 325. doi: 10.1016/S1473-3099(01)00145-1.
  34. Stein G.E. Comparison of single-dose fosfomycin and a 7-day course of nitrofurantoin in female patients with uncomplicated urinary tract infection. Clin Ther. 1999;21(11):1864-1872. doi: 10.1016/S0149-2918(00)86734-X.
  35. Huttner A., Kowalczyk A., Turjeman A., Babich T., Brossier C., Eliakim-Raz N., Kosiek K., Martinez de Tejada B., Roux X., Shiber S., Theuretzbacher U., von Dach E., Yahav D., Leibovici L., Godycki-Cwirko M., Mouton J.W., Harbarth S. Effect of 5-Day Nitrofurantoin vs Single-Dose Fosfomycin on Clinical Resolution of Uncomplicated Lower Urinary Tract Infection in Women: A Randomized Clinical Trial. JAMA 2018;319(17):1781-1789. doi: 10.1001/jama.2018.3627.
  36. The selection and use of essential medicines. Report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2017 (including the 20th WHO Model List of Essential Medicines and the 6 th WHO Model List of Essential Medicines for Children). Доступно на сайте ВОЗ: (http://apps.who.int/iris /bitstream/handle /10665/259481/9789241210157-eng.pdf;jsessionid=B3 0EB53483079A0031CFAC1708FE542E?sequence=1).
  37. WHO/MVP/EMP/IAU/2019.10; The 2019 WHO AWaRe classification of antibiotics for evaluation and monitoring of use.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies