Theoretical basis of the uropatogens interactions with the host-organism in case of occurrence and development of acute pyelonephritis (review - part III)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The formation and development theories of bacterial inflammation in organs and tissues have been studied in detail and confirmed by experimental and clinical data. However, the development ofinflammation in each organ has its characteristics associated with its structures and functions. This fully applies to acute pyelonephritis. The peculiar structure of uropathogens, their virulence, the reaction of the host organism in response to bacterial invasion, namely, factors of innate and acquired immunity, are analyzed in detail in the review. It reflects both the basic mechanisms of development of acute pyelonephritis and proteomic and genetic factors involved during inflammatory lesions.

Full Text

Restricted Access

About the authors

M. I Kogan

Rostov State Medical University

Email: dept_kogan@mail.ru
Honored Scientist of the Russian Federation, M.D., Dr. Sc. (M), Full Prof.; Head, Dept. of Urology and Human Reproductive Health (with the Pediatric Urology and Andrology course)

References

  1. Melican K., Sandoval R.M., Kader A., Josefsson L., Tanner G.A., Molitoris B.A., Richter-Dahlfors A. Uropathogenic Escherichia coli P and Type 1 fimbriae act in synergy in a living host to facilitate renal colonization leading to nephron obstruction. PLoS Pathog. 2011 ;7(2):e1001298. Doi: 10.1371/ journal.ppat.1001298.
  2. Melican K., Boekel J., Ryden-Aulin M., Richter-Dahlfors A. Novel innate immune functions revealed by dynamic, real-time live imaging of bacterial infections. Crit Rev Immunol. 2010;30(2):107-117. Doi: 10.1615/ critrevimmunol.v30.i2.10.
  3. Mänsson L.E., Melican K., Boekel J., Sandoval R.M., Hautefort I., Tanner G.A., Molitoris B.A., Richter-Dahlfors A. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell Microbiol. 2007;9(2):413-424. doi: 10.1111/j.1462-5822.2006.00799.x.
  4. Choong F.X., Antypas H., Richter-Dahlfors A. Integrated Pathophysiology of Pyelonephritis. Microbiol Spectr. 2015;3(5). doi: 10.1128/microbiolspec. UTI-0014-2012.
  5. Grossman S., Porth C.M., Conelius J., Gerard S.O., Moriber N., O’Shea E.R., Wheeler K., Bautista C. Porth’s Pathophysiology: Concepts of Altered Health States-9th edition. Nursing and Health Studies Faculty Book Gallery; 2014.
  6. Belyayeva M., Jeong J.M. Acute Pyelonephritis. [Updated 2019 Feb 28]. In: Stat Pearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK519537/
  7. Wright K.J., Hultgren S.J. Sticky fibers and uropathogenesis: bacterial adhesins in the urinary tract. Future Microbiol. 2006;1(1):75-87. doi: 10.2217/17460913.1.1.75.
  8. Copstead L.E., Banasik J.L. Pathophysiology. 5th Edition. 2013.
  9. Snyder J.A., Haugen B.J., Lockatell C.V., Maroncle N., Hagan E.C., Johnson D.E., Welch R.A., Mobley H.L. Coordinate expression of fimbriae in uropathogenic Escherichia coli. Infect Immun. 2005;73(11):7588-7596. doi: 10.1128/IAI.73.11.7588-7596.2005.
  10. Holden N.J., Gally D.L. Switches, cross-talk and memory in Escherichia coli adherence. J Med Microbiol. 2004;53(7):585-593. Doi: 10.1099/ jmm.0.05491-0.
  11. Jameson J.L., Loscalzo J. Harrison’s Nephrology and Acid-Base Disorders (Harrison’s Medical Guides) 1st Edition. McGraw-Hill Professional; 2010.
  12. Ramos N.L., Saayman M.L., Chapman T.A., Tucker J.R., Smith H.V., Faoagali J., Chin J. C., Brauner A., Katouli M. Genetic relatedness and virulence gene profiles of Escherichia coli strains isolated from septicaemic and uroseptic patients. Eur J Clin Microbiol Infect Dis. 2010;29(1):15-23. doi: 10.1007/s10096-009-0809-2.
  13. Lange D., Scotland K.B. The Role of Bacteria in Urology. Springer Nature Switzerland AG; 2019.
  14. Naboka Y.L., Mavzyiutov A.R., Kogan M.I., Gudima I.A., Ivanov S.N., Naber K.G. Does Escherichia coli have pathogenic potential at a low level of bacteriuria in recurrent, uncomplicated urinary tract infection? Int J Antimicrob Agents. 2020;21:105983. Doi: 10.1016/j. ijantimicag.2020.105983.
  15. Bijlsma I.G., van Dijk.L, Kusters J.G., Gaastra W. Nucleotide sequences of two fimbrial major subunit genes, pmpA and ucaA, from canine-uropathogenic Proteus mirabilis strains. Microbiology. 1995;141(6):1349- 1357. doi: 10.1099/13500872-141-6-1349.
  16. Boyd E.F., Hartl D.L. Diversifying selection governs sequence polymorphism in the major adhesin proteins fimA, papA, and sfaA of Escherichia coli. J Mol Evol. 1998;47(3):258-267. doi: 10.1007/pl00006383.
  17. Johnson J.R., Stell A.L. Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 2000;181(1):261-272. doi: 10.1086/315217.
  18. Johnson J.R., Stell A.L., Kaster N., Fasching C., O’Bryan T.T. Novel molecular variants of allele I of the Escherichia coli P fimbrial adhesin gene papG. Infect Immun. 2001;69(4):2318-2327. doi: 10.1128/IAI.69.4.2318-2327.2001.
  19. Ejrnxs K., Stegger M., Reisner A., Ferry S., Monsen T., Holm S.E., Lundgren B., Frimodt-Moller N. Characteristics of Escherichia coli causing persistence or relapse of urinary tract infections: phylogenetic groups, virulence factors and biofilm formation. Virulence. 2011 ;2(6):528-537. doi: 10.4161/viru.2.6.18189.
  20. Lane M.C., Mobley H.L. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int. 2007;72(1):19-25. Doi: 10.1038/ sj.ki.5002230.
  21. Connell H., Hedlund M., Agace W., Svanborg C. Bacterial attachment to uro-epithelial cells: mechanisms and consequences. Adv Dent Res. 1997;11(1):50-58. doi: 10.1177/08959374970110011701.
  22. Gluba A., Banach M., Hannam S., Mikhailidis D.P., Sakowicz A., Rysz J. The role of Toll-like receptors in renal diseases. Nat Rev Nephrol. 2010;6(4):224-235. doi: 10.1038/nrneph.2010.16.
  23. Wei Y., Li K., Wang N., Cai G.D., Zhang T, Lin Y, Gui B.S., Liu E.Q., Li Z.F., Zhou W. Activation of endogenous anti-inflammatory mediator cyclic AMP attenuates acute pyelonephritis in mice induced by uropathogenic Escherichia coli. Am J Pathol. 2015;185(2):472-484. Doi: 10.1016/j. ajpath.2014.10.007.
  24. Laestadius A., Richter-Dahlfors A., Aperia A. Dual effects of Escherichia coli alpha-hemolysin on rat renal proximal tubule cells. Kidney Int. 2002;62(6):2035-2042. doi: 10.1046/j.1523-1755.2002.00661.x.
  25. Trifillis A.L., Donnenberg M.S., Cui X., Russell R.G., Utsalo S.J., Mobley H.L., Warren J.W. Binding to and killing of human renal epithelial cells by hemolytic P-fimbriated E. coli. Kidney Int. 1994;46(4):1083-1091. doi: 10.1038/ki.1994.370.
  26. Cavalieri S.J., Snyder I.S. Effect of Escherichia coli alpha-hemolysin on human peripheral leukocyte viability in vitro. Infect Immun. 1982;36(2):455-461. PMID: 7044971; PMCID: PMC351249.9.
  27. Uhlen P., Laestadius A., Jahnukainen T., Söderblom T., Bäckhed F., Celsi G., Brismar H., Normark S., Aperia A., Richter-Dahlfors A. Alpha-haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature. 2000;405(6787):694-697. doi: 10.1038/35015091. PMID: 10864327.
  28. Samuelsson P., Hang L., Wullt B., Irjala H., Svanborg C. Toll-like receptor 4 expression and cytokine responses in the human urinary tract mucosa. Infect Immun. 2004;72(6):3179-3186. doi: 10.1128/IAI.72.6.3179-3186.2004.
  29. Li K., Wu K.Y., Wu W., Wang N., Zhang T., Choudhry N., Song Y., Farrar C.A., Ma L., Wei L.L., Duan Z.Y., Dong X., Liu E.Q., Li Z.F., Sacks S.H., Zhou W. C5aR1 promotes acute pyelonephritis induced by uropathogenic E. coli. JCI Insight. 2017;2(24):e97626. doi: 10.1172/jci.insight.97626.
  30. Uematsu S., Akira S. Toll-like receptors and innate immunity. J Mol Med (Berl). 2006;84(9):712-725. doi: 10.1007/s00109-006-0084-y.
  31. El-Achkar T.M., Huang X., Plotkin Z., Sandoval R.M., Rhodes G.J., Dagher P.C. Sepsis induces changes in the expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol. 2006;290(5):F1034-1043. doi: 10.1152/ajprenal.00414.2005.
  32. Dagher P.C., Basile D.P. An expanding role of Toll-like receptors in sepsis-induced acute kidney injury. Am J Physiol Renal Physiol. 2008;294(5):F1048-1049. doi: 10.1152/ajprenal.00125.2008.
  33. Vysakh A., Raji N.R., Suma D., Jayesh K., Jyothis M., Latha M.S. Role of antioxidant defence, renal toxicity markers and inflammatory cascade in disease progression of acute pyelonephritis in experimental rat model. Microb Pathog. 2017;109:189-194. doi: 10.1016/j.micpath.2017.05.047.
  34. Sullivan M.J., Ulett G.C. Evaluation of hematogenous spread and ascending infection in the pathogenesis of acute pyelonephritis due to group B streptococcus in mice. Microb Pathog. 2020;138:103796. Doi: 10.1016/j. micpath.2019.103796.
  35. Heinzelmann M., Mercer-Jones M.A., Passmore J.C. Neutrophils and renal failure. Am J Kidney Dis. 1999;34(2):384-399. doi: 10.1016/s0272-6386(99)70375-6.
  36. Ragnarsdottir B., Svanborg C. Susceptibility to acute pyelonephritis or asymptomatic bacteriuria: host-pathogen interaction in urinary tract infections. Pediatr Nephrol. 2012;27(11):2017-2029. Doi: 10.1007/ s00467-011-2089-1.
  37. Agace W.W., Hedges S.R., Ceska M., Svanborg C. Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J Clin Invest. 1993;92(2):780-785. doi: 10.1172/JCI116650.
  38. Godaly G., Proudfoot A.E., Offord R.E., Svanborg C., Agace W.W. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect Immun. 1997;65(8):3451-3456. PMID: 9234811; PMCID: PMC175488.
  39. Glauser M.P., Lyons J.M., Braude A.I. Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. J Clin Invest. 1978;61(2):403-407. doi: 10.1172/JCI108951.
  40. Sullivan M.J., Harvey R.A., Shimamura T. The effects of cobra venom factor, an inhibitor of the complement system, on the sequence of morphological events in the rat kidney in experimental pyelonephritis. Yale J Biol Med. 1977;50(3):267-273. PMID: 329591; PMCID: PMC2595429.7.
  41. Ali A.S., Townes C.L., Hall J., Pickard R.S. Maintaining a sterile urinary tract: the role of antimicrobial peptides. J Urol. 2009;182(1):21-28. doi: 10.1016/j.juro.2009.02.124.
  42. Orskov I., Ferencz A., Orskov F. Tamm-Horsfall protein or uromucoid is the normal urinary slime that traps type 1 fimbriated Escherichia coli. Lancet. 198019;1(8173):887. doi: 10.1016/s0140-6736(80)91396-3.
  43. Dulawa J., Jann K., Thomsen M., Rambausek M., Ritz E. Tamm Horsfall glycoprotein interferes with bacterial adherence to human kidney cells. Eur J Clin Invest. 1988;18(1):87-91. doi: 10.1111/j.1365-2362.1988.tb01171.x.
  44. Selsted M.E., Ouellette A.J. Mammalian defensins in the antimicrobial immune response. Nat Immunol. 2005;6(6):551-557. Doi: 10.1038/ ni1206.
  45. Weichhart T., Haidinger M., Hörl W.H., Säemann M.D. Current concepts of molecular defence mechanisms operative during urinary tract infection. Eur J Clin Invest. 2008;38(2):29-38. doi: 10.1111/j.1365-2362.2008.02006.x.
  46. Li B., Haridas B., Jackson A.R., Cortado H., Mayne N., Kohnken R., Bolon B., McHugh K.M., Schwaderer A.L., Spencer J.D., Ching C.B., Hains D.S., Justice S.S., Partida-Sanchez S., Becknell B. Inflammation drives renal scarring in experimental pyelonephritis. Am J Physiol Renal Physiol. 20171;312(1):F43-F53. doi: 10.1152/ajprenal.00471.2016.
  47. Melican K., Boekel J., Mänsson L.E., Sandoval R.M., Tanner G.A., Källskog O., Palm F., Molitoris B.A., Richter-Dahlfors A. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell Microbiol. 2008;10(10):1987-1998. Doi: 10.1111/j. 1462-5822.2008.01182.x.
  48. Molitoris B.A. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol. 1991;260(2):F769-778. doi: 10.1152/ajprenal.1991.260.6.F769.
  49. Boekel J., Källskog O., Ryden-Aulin M., Rhen M., Richter-Dahlfors A. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection. BMC Genomics. 2011;12:123. doi: 10.1186/1471-2164-12-123.
  50. Goligorsky M.S., Lieberthal W., Racusen L., Simon E.E. Integrin receptors in renal tubular epithelium: new insights into pathophysiology of acute renal failure. Am J Physiol. 1993;264(1 Pt 2):F1-8. Doi: 10.1152/ ajprenal.1993.264.1.F1.
  51. Craig W.D., Wagner B.J., Travis M.D. Pyelonephritis: radiologic-pathologic review. Radiographics. 2008;28(1):255-277. doi: 10.1148/rg.281075171.
  52. Demertzis J., Menias C.O. State of the art: imaging of renal infections. Emerg Radiol. 2007;14(1):13-22. doi: 10.1007/s10140-007-0591-3.
  53. Choudhry N., Li K., Zhang T., Wu K.Y., Song Y., Farrar C.A., Wang N., Liu C.F., Peng Q., Wu W., Sacks S.H., Zhou W. The complement factor 5a receptor 1 has a pathogenic role in chronic inflammation and renal fibrosis in a murine model of chronic pyelonephritis. Kidney Int. 2016;90(3):540- 554. doi: 10.1016/j.kint.2016.04.023.
  54. Chevalier R.L., Forbes M.S., Thornhill B.A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009;75(11):1145-1152. doi: 10.1038/ki.2009.86.
  55. Oxburgh L., de Caestecker M.P. Ischemia-reperfusion injury of the mouse kidney. Methods Mol Biol. 2012;886:363-379. doi: 10.1007/978-1-61779-851-1_32.
  56. Becknell B., Schober M., Korbel L., Spencer J.D. The diagnosis, evaluation and treatment of acute and recurrent pediatric urinary tract infections. Expert Rev Anti Infect Ther. 2015;13(1):81-90. doi: 10.1586/14787210.2015.986097.
  57. Park Y.S. Renal scar formation after urinary tract infection in children. Korean J Pediatr. 2012;55(10):367-370. doi: 10.3345/kjp.2012.55.10.367.
  58. Peters C., Rushton H.G. Vesicoureteral reflux associated renal damage: congenital reflux nephropathy and acquired renal scarring. J Urol. 2010;184(1):265-273. doi: 10.1016/j.juro.2010.03.076.
  59. Gudmundsson G.H., Agerberth B., Odeberg J., Bergman T., Olsson B., Salcedo R. The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. Eur J Biochem. 1996;238(2):325-332. doi: 10.1111/j.1432-1033.1996.0325z.x.
  60. Ren Y., Garvin J.L., Liu R., Carretero O.A. Cross-talk between arterioles and tubules in the kidney. Pediatr Nephrol. 2009;24(1):31-35. Doi: 10.1007/ s00467-008-0852-8.
  61. Briggs J.P., Schnermann J. The tubuloglomerular feedback mechanism: functional and biochemical aspects. Annu Rev Physiol. 1987;49:251-273. doi: 10.1146/annurev.ph.49.030187.001343.
  62. Boekel J., Källskog O., Ryden-Aulin M., Rhen M., Richter-Dahlfors A. Comparative tissue transcriptomics reveal prompt inter-organ communication in response to local bacterial kidney infection. BMC Genomics. 201121;12:123. doi: 10.1186/1471-2164-12-123.
  63. McLellan L.K., Hunstad D.A. Urinary Tract Infection: Pathogenesis and Outlook. Trends Mol Med. 2016;22(11):946-957. Doi: 10.1016/j. molmed.2016.09.003.
  64. Fischer H., Lutay N., Ragnarsdottir B., Yadav M., Jönsson K., Urbano A, Al Hadad A., Rämisch S., Storm P., DobrindtU., Salvador E., Karpman D., Jodal U., Svanborg C. Pathogen specific, IRF3-dependent signaling and innate resistance to human kidney infection. PLoS Pathog. 2010;6(9):e1001109. doi: 10.1371/journal.ppat.1001109.
  65. Frendeus B., Godaly G., Hang L., Karpman D., Lundstedt A.C., Svanborg C. Interleukin 8 receptor deficiency confers susceptibility to acute experimental pyelonephritis and may have a human counterpart. J Exp Med. 2000;192(6):881-890. doi: 10.1084/jem.192.6.881.
  66. Yin X., Hou T., Liu Y., Chen J., Yao Z., Ma C., Yang L., Wei L. Association of Toll-like receptor 4 gene polymorphism and expression with urinary tract infection types in adults. PLoS One. 2010;5(12):e14223. Doi: 10.1371/ journal.pone.0014223.
  67. Hawn T.R., Scholes D., Wang H., Li S.S., Stapleton A.E., Janer M., Aderem A., Stamm W.E., Zhao L.P., Hooton T.M. Genetic variation of the human urinary tract innate immune response and asymptomatic bacteriuria in women. PLoS One. 2009;4(12):e8300. doi: 10.1371/journal.pone.0008300.
  68. Smithson A., Sarrias M.R., Barcelo J., Suarez B., Horcajada J.P., Soto S.M., Soriano A., Vila J., Martinez J.A., Vives J., Mensa J., Lozano F. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol. 2005;12(12):1358-1363. doi: 10.1128/CDLI.12.12.1358-1363.2005.
  69. Artifoni L., Negrisolo S., Montini G., Zucchetta P., Molinari P.P., Cassar W., Destro R., Anglani F., Rigamonti W., Zacchello G., Murer L. Interleukin-8 and CXCR1 receptor functional polymorphisms and susceptibility to acute pyelonephritis. J Urol. 2007;177(3): 1102-1106. Doi: 10.1016/j. juro.2006.10.037.
  70. Hussein A., Askar E., Elsaeid M., Schaefer F. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol Dial Transplant. 2010;25(3):779-785. doi: 10.1093/ndt/gfp532.
  71. Kuroda S., Solari V., Puri P. Association of transforming growth factor-beta1 gene polymorphism with familial vesicoureteral reflux. J Urol. 2007;178(4 Pt 2):1650-1653. doi: 10.1016/j.juro.2007.03.199.
  72. Leffler H., Svanborg-Eden C. Chemical identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary tract epithelial cells and agglutinating human erythrocytes. FEMS Microbiol Lett. 1980;8(3):127-134. doi: 10.1111/j.1574-6968.1980.tb05064.x.
  73. Lindstedt R., Larson G., Falk P., Jodal U., Leffler H., Svanborg C. The receptor repertoire defines the host range for attaching Escherichia coli strains that recognize globo-A. Infect Immun. 1991;59(3):1086-1092. PMID: 1671774.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies