Andrological aspects of new coronavirus infection Covid-19
- Authors: Akhvlediani N.D.1, Reva I.A1, Chernushenko A.S1, Pushkar D.Y.1
-
Affiliations:
- A.I. Evdokimov Moscow State University of Medicine and Dentistry
- Issue: No 6 (2021)
- Pages: 130-135
- Section: Articles
- URL: https://journals.eco-vector.com/1728-2985/article/view/312748
- DOI: https://doi.org/10.18565/urology.2021.6.130-135
- ID: 312748
Cite item
Abstract
Keywords
Full Text

About the authors
N. D. Akhvlediani
A.I. Evdokimov Moscow State University of Medicine and Dentistry
Email: nikandro@mail.ru
Ph.D., MD, professor at the Department of Urology Moscow, Russia
I. A Reva
A.I. Evdokimov Moscow State University of Medicine and Dentistry
Email: rewa-igor@rambler.ru
Ph.D., urologist, acting Head of the Urologic Department of University Clinic Moscow, Russia
A. S Chernushenko
A.I. Evdokimov Moscow State University of Medicine and Dentistry
Email: artemchemushenko@gmail.com
urologist at the Urologic Department of University Clinic Moscow, Russia
D. Yu Pushkar
A.I. Evdokimov Moscow State University of Medicine and Dentistry
Email: pushkardm@mail.ru
Ph.D., MD, professor, academician of RAS, Head of the Department of Urology Moscow, Russia
References
- Xie J. Clinical Characteristics of Patients Who Died of Coronavirus Disease 2019 in China/J. Xie, Z. Tong, X. Guan, et al. JAMA Netw Open. 2020;3(4):e205619. doi: 10.1001/jamanetworkopen.2020.5619.
- Onder G. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. Onder G., Rezza G., Brusaferro S. JAMA. 2020;323(18):1775-1776. doi: 10.1001/jama.2020.4683.
- Chen T. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. Chen Т., Wu D.I., Chen Н., et al. BMJ. 2020;368: m1091. doi: 10.1136/bmj.m1295.
- Korean Society of Infectious Diseases; Korean Society of Pediatric Infectious Diseases; Korean Society of Epidemiology; Korean Society for Antimicrobial Therapy; Korean Society for Healthcare-associated Infection Control and Prevention; Korea Centers for Disease Control and Prevention. Report on the Epidemiological Features of Coronavirus Disease 2019 (COVID-19) Outbreak in the Republic of Korea from January 19 to March 2, 2020. J Korean Med Sci. 2020; 35(10):e112. doi: 10.3346/jkms.2020.35.e112.
- La Vignera S. Sex-Specific SARS-CoV-2 Mortality: Among Hormone-Modulated ACE2 Expression, Risk of Venous Thromboembolism and Hypovitaminosis La Vignera D.S., Cannarella R., Condorelli R.A., et al.Int J Mol Sci. 2020;21(8):2948. doi: 10.3390/ijms21082948.
- Pozzilli P.Commentary: Testosterone, a key hormone in the context of COVID-19 pandemic. P. Pozzilli A. Lenzi Metabolism. 2020;108:154252. doi: 10.1016/j.metabol.2020.154252.
- Douglas G.C. The novel angiotensin-converting enzyme (ACE) homolog, ACE2, is selectively expressed by adult Leydig cells of the testis. G.C. Douglas, M.K. O’Bryan, M.P. Hedger, et al. Endocrinology. 2004;145(10):4703-4711. doi: 10.1210/en.2004-0443.
- Wang Z. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Z. Wang, X. Xu. Cells. 2020;9(4):920. doi: 10.3390/cells9040920.
- Walls A.C. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. A.C. Walls, Y.J. Park, M A. Tortorici, et al. Cell. 2020;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058.
- Hamming I. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. I. Hamming, W. Timens, M. L. Bulthuis, et al. J Pathol. 2004;203(2):631- 637. doi: 10.1002/path.1570.
- Nicholls J. Good ACE, bad ACE do battle in lung injury, SARS. Nicholls J., Peiris M. Nat Med. 2005;11(8):821-822. doi: 10.1038/nm0805-821.
- Pal R. COVID-19, diabetes mellitus and ACE2: The conundrum. Pal R., Bhansali A. Diabetes Res Clin Pract. 2020;162:108132. Doi: 10.1016/j. diabres.2020.108132.
- Fang L. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? / L. Fang, G. Karakiulakis, M. Roth. Lancet Respir Med. 2020;8(4):e21. doi: 10.1016/S2213-2600(20)30116-8.
- Fan R. Preliminary analysis of the association between methylation of the ACE2 promoter and essential hypertension. Fan R., Mao S.Q., Gu T.L., et al. Mol Med Rep. 2017;15(6):3905-3911. doi: 10.3892/mmr.2017.6460.
- Liu J. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17|3-oestradiol-dependent and sex chromosome-independent. Liu J., Ji H., Zheng W., et al. Biol Sex Differ. 2010. Vol. 1. № 1. Р. 6. doi: 10.1186/2042-6410-1-6.
- Wilson S. The membrane-anchored serine protease, TMPRSS2, activates PAR-2 in prostate cancer cells. S. Wilson, B. Greer, J. Hooper, et al. Biochem J. 2005;388(3):967-972. doi: 10.1042/BJ20041066.
- Lucas J.M. The androgen-regulated protease TMPRSS2 activates a proteolytic Cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Lucas J. M., Heinlein C., Kim T., et al. Cancer Discovery. 2014;4(11):1310-1325. doi: 10.1158/2159-8290. CD-13-1010.
- Asselta R. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Asselta R., Paraboschi E.M., Mantovani A., et al. medRxiv. 2020. doi: 10.1101/2020.03.30.20047878.
- Guan W. J. Clinical Characteristics of Covid-19 in China. Reply. Guan W.J., Zhong N.S. N. Engl J Med. 2020;382(19):1861-1862. Doi: 10.1056/ NEJMc2005203.
- Wambier C.G. Androgen sensitivity gateway to COVID-19 disease severity. Wambier C.G., Goren A., Vano-Galvan S., et al. Drug Dev Res. 2020;81(7):771-776. doi: 10.1002/ddr.21688.
- Hoffmann M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Hoffmann M., Kleine-Weber H., Schroeder S., et al. Cell. 2020;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052.
- Montopoli M. Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N=4532). Montopoli M., Zumerle S., Vettor R., et al. Ann Oncol. 2020;31(8):1040-1045. doi: 10.1016/j.annonc.2020.04.479.
- Shi S. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. Shi S., Qin M., Shen B., et al. JAMA Cardiol. 2020;5(7):802-810. doi: 10.1001/jamacardio.2020.0950.
- Deanfield J.E. Endothelial function and dysfunction: testing and clinical relevance. Deanfield J.E, Halcox J.P., Rabelink T.J. Circulation. 2007;115(10):1285-1295. doi: 10.1161/CIRCULATIONAHA.106.652859.
- Varga Z. Endothelial cell infection and endotheliitis in COVID-19. Varga Z., Flammer A.J., Steiger P., et al. Lancet. 2020;395(10234):1417-1418. doi: 10.1016/S0140-6736(20)30937-5.
- Dal Moro F. Any possible role of phosphodiesterase type 5 inhibitors in the treatment of severe COVID19 infections? A lesson from urology. Dal Moro F., Livi U. Clin Immunol. 2020;214:108414. Doi: 10.1016/j. clim.2020.108414.
- Akerstrom S. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. Akerstrom S., Mousavi-Jazi M., Klingstrom J., et al. J. Virol. 2005;79(3): 1966-1969. Doi: 10.1128/ JVI.79.3.1966-1969.
- Hak A.E. Low levels of endogenous androgens increase the risk of atherosclerosis in elderly men: the Rotterdam study. Hak A.E., Witteman J.C., de Jong F.H., et al. J Clin Endocrinol Metab. 2002;87(8):3632-3639. doi: 10.1210/jcem.87.8.8762.
- Haffner S.M. Relationship of sex hormones to lipids and lipoproteins in nondiabetic men. Haffner S.M,, Mykkanen L., Valdez R.A., et al. J Clin Endocrinol Metab. 1993;77(6):1610-1615. Doi: 10.1210/ jcem.77.6.8263149.
- Jones T.H. Randomized controlled trials - mechanistic studies of testosterone and the cardiovascular system. Jones T.H., D.M. Kelly. Asian J Androl. 2018;20(2):120-130. doi: 10.4103/aja.aja_6_18.
- Khaw K.T. Endogenous testosterone and mortality due to all causes, cardiovascular disease, and cancer in men: European prospective investigation into cancer in Norfolk (EPIC-Norfolk) Prospective Population Study. Khaw K.T., Dowsett M., Folkerd E., et al. Circulation. 2007;116(23):2694- 2701. doi: 10.1161/CIRCULATIONAHA.107.719005.
- Vikan T. Endogenous sex hormones and the prospective association with cardiovascular disease and mortality in men: the Tromso Study. Vikan T., Schirmer H., Njolstad I., et al. J. Eur J Endocrinol. 2009;161(3):435-442. doi: 10.1530/EJE-09-0284.
- Balasubramanian V. Hypogonadism in chronic obstructive pulmonary disease: incidence and effects. Balasubramanian V., Naing S. Curr Opin Pulm Med. 2012;18(2):112-117. doi: 10.1097/MCP.0b013e32834feb37.
- Montano L.M. Androgens are bronchoactive drugs that act by relaxing airway smooth muscle and preventing bronchospasm. Montano L.M., Espinoza J., Flores-Soto E., et al. J Endocrinol. 2014. Vol. 222. № 1. Р. 1-13. doi: 10.1530/JOE-14-0074.
- Mohan S.S. Higher serum testosterone and dihydrotestosterone, but not oestradiol, are independently associated with favourable indices of lung function in community-dwelling men. Mohan S.S, Knuiman M.W., Divitini M.L., et al. Clin Endocrinol (Oxf). 2015;83(2):268-276. doi: 10.1111/cen.12738.
- Caminiti G. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a doubleblind, placebo-controlled, randomized study. Caminiti G., Volterrani M., Iellamo F., et al. J Am Coll Cardiol. 2009; 54(10):919-927. Doi: 10.1016/j. jacc.2009.04.078.
- Whyte C.S. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat COVID-19. Whyte C.S., Morrow G.B., Mitchell J L., et al. J Thromb Haemost. 2020;18(7):1548-1555. doi: 10.1111/jth.14872.
- Kollias A. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: emerging evidence and call for action. Kollias A., Kyriakoulis K.G., Dimakakos E., et al. Br J Haematol. 2020;189(5):846-847. Doi: 10.1111/ bjh.16727.
- The Ministry of Health of the Russian Federation. Temporary methodological recommendations. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 9 / Ministry of Health of the Russian Federation. Moscow, 2020. 236 p.Russian @@Министерство здравоохранения Российской Федерации. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 9 / Министерство здравоохранения Российской Федерации. М., 2020. 236 с.
- Tang N. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Tang N., Bai H., Chen X., et al. J Thromb Haemost. 2020;18(5):1094-1099. doi: 10.1111/jth.14817.
- Tang N. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Tang N., Li D., Wang X., et al. J Thromb Haemost. 2020;18(4):844-847. doi: 10.1111/jth.14768.
- Ajayi A.A. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Ajayi A.A., Mathur R., Halushka P.V. Circulation. 1995;91(11):2742-2747. doi: 10.1161/01.cir.91.11.2742.
- Karolczak K. Testosterone and dihydrotestosterone reduce platelet activation and reactivity in older men and women. Karolczak K., Konieczna L., Kostka T., et al. Aging (Albany NY). 2018;10(5):902-929. doi: 10.18632/aging.101438.
- Khetawat G. Human megakaryocytes and platelets contain the estrogen receptor beta and androgen receptor (AR): testosterone regulates AR expression. Khetawat G., Faraday N., Nealen M.L., et al. Blood. 2000;95(7):2289-2296.
- Glueck C.J. Endogenous testosterone, fibrinolysis, and coronary heart disease risk in hyperlipidemic men. Glueck C.J., Glueck H.I., Stroop D., et al. J Lab Clin Med. 1993;122(4):412-420.
- Giagulli V.A. Worse progression of COVID-19 in men: Is testosterone a key factor? Giagulli V.A., Guastamacchia E., Magrone T., et al. Andrology. 2020. 11:10.1111/andr.12836. doi: 10.1111/andr.12836.
- Zeng F. A comparison study of SARS-CoV-2 IgG antibody between male and female COVID-19 patients: A possible reason underlying different outcome between sex. Zeng F., Dai C., Cai P., et al. J Med Virol. 2020;92(10):2050-2054. doi: 10.1002/jmv.25989.
- Rastrelli G. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Rastrelli G., Di Stasi V., Inglese F., et al. Andrology. 2020. 10.1111/andr.12821. doi: 10.1111/andr.12821.
- Iglesias P. Hypogonadism in aged hospitalized male patients: prevalence and clinical outcome. P. Iglesias P., Prado F., Macias M.C., et al. J Endocrinol Invest. 2014;37(2):135-141. doi: 10.1007/s40618-013-0009-x.
- Nakashima A. Associations Between Low Serum Testosterone and All-Cause Mortality and Infection-Related Hospitalization in Male Hemodialysis Patients: A Prospective Cohort Study. Nakashima A., Ohkido I., Yokoyama K., et al. Kidney Int Rep. 2017;2(6):1160-1168. Doi: 10.1016/j. ekir.2017.07.015.
- Rowland S.P. Screening for low testosterone is needed for early identification and treatment of men at high risk of mortality from Covid-19. Rowland S.P., O’Brien Bergin E. Crit Care. 2020;24(1):367. doi: 10.1186/s13054-020-03086-z.
- Richardson S. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. Richardson S., Hirsch J.S., Narasimhan M., et al. JAMA. 2020;323(20):2052. doi: 10.1001/jama.2020.6775.
- Dietz W. Obesity and its Implications for COVID-19 Mortality / W. Dietz, C. Santos-Burgoa // Obesity (Silver Spring). 2020;28(6):1005. doi: 10.1002/oby.22818.
- Ryan D.H. COVID-19 and the Patient with Obesity - The Editors Speak Out. Ryan D.H., Ravussin E., Heymsfield S. Obesity (Silver Spring). 2020;28(5):847. doi: 10.1002/oby.22808.
- Simonnet A. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Simonnet A., Chetboun, Poissy J., et al. Obesity (Silver Spring). 2020;28(7):1195-1199. doi: 10.1002/oby M.22831.
- Kassir R. Risk of COVID-19 for patients with obesity. Kassir R. Obes Rev. 2020;21:13034. doi: 10.1111/obr.13034.
- Giagulli V.A. Pathogenesis of the decreased androgen levels in obese men. Giagulli V.A., Kaufman J.M., Vermeulen A. J Clin Endocrinol Metab. 1994;79(4):997-1000. doi: 10.1210/jcem.79.4.7962311.
- Garci'a-Alonso V. Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. Garcia-Alonso V., Titos E., Alcaraz-Quiles J., et al. PLoS One. 2016;11(4): e0153751. doi: 10.1371/journal.pone.0153751.
- Simpson, E.R. Minireview: aromatase and the regulation of estrogen biosynthesi-some new perspectives. Simpson E.R., Davis S.R. Endocrinology. 2001;142(11):4589-4594. doi: 10.1210/endo.142.11.8547.
- Mohamad N.V. The relationship between circulating testosterone and inflammatory cytokines in men. Mohamad N.V., Wong S.K., Wan Hasan W.N., et al. Aging Male. 2019;22(2):129-140. doi: 10.1080/13685538.2018.1482487.
- Corona G. Hypogonadism as a possible link between metabolic diseases and erectile dysfunction in aging men. Corona G., Bianchini S., Sforza A., et al. Hormones (Athens). 2015;14(4):569-578. doi: 10.14310/horm.2002.1635.
- Salonia A. SARS-CoV-2, testosterone and frailty in males (PROTEGGIMI): A multidimensional research project. Salonia A., Corona G., Giwercman A., et al. Andrology. 2020. doi: 10.1111/andr.12811.
- Yang M. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. Yang M., Chen S., Huang B., et al. Eur Urol Focus. 2020;6(5):1124-1129. doi: 10.1016/j.euf.2020.05.009.
- Ma X. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Ma X., Guan C., Chen R., et al. Cell Mol Immunol. 2020. doi: 10.1038/s41423-020-00604-5.
- La Marca A. Testicular pain as an unusual presentation of COVID-19: a brief review of SARS-CoV-2 and the testis. La Marca A., Busani S., Donno V., et al. Reprod Biomed Online. 2020;41(5):903-906. Doi: 10.1016/j. rbmo.2020.07.017.
- Pan F. No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019. Pan F., Xiao X., Guo J., et al. Fertil Steril. 2020;113:1135-1139. Doi: 10.1016/j. fertnstert.2020.04.024.
- Ma L. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. Ma L., Xie W., D. Li, et al. medRxiv 2020. doi: 10.1101/2020.03.21.20037267.
- Holtmann N. Assessment of SARS-CoV-2 in human semen - a cohort study. Holtmann N., Edimiris P., Andree M., et al. Fertil Steril. 2020;114:233- 238. doi: 10.1016/j.fertnstert.2020.05.028.
- Song C. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Song C. Wang Y., Li W., et al. Biol Reprod. 2020;103(1):4-6. doi: 10.1093/biolre/ioaa050.
- Li D. Clinical characteristics and results of semen tests among men with coronavirus disease 2019. D. Li, M. Jin, P. Bao, et al. JAMA Netw Open. 2020. Р. e208292. doi: 10.1001/jamanetworkopen.2020.8292.
- He W. Impact of SARS-CoV-2 on Male Reproductive Health: A Review of the Literature on Male Reproductive Involvement in COVID-19. W. He, X. Liu, L. Feng, et al. Front Med (Lausanne). 2020;7:594364. Doi: 10.3389/ fmed.2020.594364.
- Cardona Maya W.D. SARS-CoV-2 and the testis: similarity with other viruses and routes of infection / W. D. Cardona Maya, S. S. Du Plessis, P. A. Velilla. Reprod Biomed Online. 2020; 40:763-764. doi: 10.1016/j.rbmo.2020.04.009.
