Modern molecular-genetic aspects of histological variants of renal cell carcinoma


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the main molecular mechanisms of the pathogenesis of renal cell carcinoma. The molecular pathways that determine the development of histological variants of renal cell carcinoma and the role of stem cells markers in the carcinogenesis of these tumors are considered.

Full Text

Restricted Access

About the authors

Y. I Osmanov

I.M. Sechenov First Moscow State Medical University

Email: osmanovyouseef@yandex.ru
MD, professor of Department of Pathology named after A.I. Strukov

E. A Kogan

I.M. Sechenov First Moscow State Medical University

Email: koganevg@gmail.com
MD, professor, Head of the Department of Pathology named after A.I. Strukov

Z. K Gadzhieva

I.M. Sechenov First Moscow State Medical University

Email: zgadzhieva@ooorou.ru
MD, Head of the Department for the Analysis of Personnel Policy, Educational Programs and Scientific Research of the National Medical Research Center on the profile «Urology»

D. D Prochenko

I.M. Sechenov First Moscow State Medical University

Email: chief@medprint.ruorcid0000-0002-5851-2768
Ph.D., assistant professor of Department of Pathology named after A.I. Strukov

References

  1. Аполихин О.И., Михайленко Д.С., Михальченко А.Е. и др. Молекулярногенетические нарушения как критерии в дифференциальной диагностике редких опухолей почки. Эксперментальная и клиническая урология, 2013;3:21-27
  2. Михайленко Д.С., Алексеев Б.Я., Ефремов Г.Д. и др. Генетические особенности несветлоклеточного рака почки. Онкоурология, 2016;3(12):14-21. Doi: 10.17 650 /1726-9776-2016-123-14-21.
  3. Couch Vindor N.M., Karnes P.S. et al. von Hippel-Lindau disease. Mayo Clin Proc. 2000;75(3):265-272. doi: 10.4065/75.3.265.
  4. Shuin T., Yamasaki I., Tamura K et al. Von Hippel-Lindau disease: molecular pathological basis, clinical criteria, genetic testing, clinical features of tumors and treatment. Jpn J Clin Oncol., 2006;36(6):337-343. doi: 10.1093/jjco/hyl052.
  5. Foster R., Abdulrahman M., Morris M. et al. Characterization of a 3;6 Translocation Associated with Renal Cell Carcinoma. Genes Chromosomes Cancer. 2007;46(4):311-317. doi: 10.1002/gcc.20403.
  6. Kanayama H., Lui W.O., Takahashi M. et al. Association of a novel constitutional translocation t(1q;3q) with familial renal cell carcinoma. J Med Genet., 2001 Mar;38(3):165-170. doi: 10.1136/jmg.38.3.165.
  7. Menko F.H., Maher E.R., Schmidt L.S. et al. Hereditary leiomyomatosis and renal cell cancer (HLRCC). Renal cancer risk, surveillance and treatment. Fam Cancer, 2014;13(4):637-644. doi: 10.1007/s10689-014-9735-2.
  8. Raymond V.M., Herron C.M., Giordano T.J., Gruber S.B. Familial renal cancer as an indicator of hereditary leiomyomatosis and renal cell cancer syndrome. Fam Cancer, 2012;11(1):115-121. doi: 10.1007/s10689-011-9485-3.
  9. Linehan W.M. Genetic basis of kidney cancer: role of genomics for the development of disease-based therapeutics. Genome Res., 2012;22:2089- 2100. doi: 10.1101/gr.131110.111.
  10. Wadt K., Gerdes A.M., Hansen T.V. et al. Novel germline c-Met mutation in a family with hereditary papillary renal carcinoma. Fam Cancer. 2012;11(3):535-537. doi: 10.1007/s10689-012-9542-6. doi: 10.1007/ s10689-012-9542-6.
  11. Benhammou J.N., Vocke C.D., Santani A. et al. Identification of intragenic deletions and duplication in the FLCN gene in Birt-Hogg-Dube syndrome. Genes Chromosomes Cancer, 2011 ;50(6):466-477. doi: 10.1002/gcc.20872.
  12. Schmidt L.S., Linehan W.M. Clinical features, genetics and potential therapeutic approaches for Birt-Hogg-Dube syndrome. Expert Opin Orphan Drugs., 2015;3(1):15-29. doi: 10.1517/21678707.2014.987124.
  13. Benn D.E., Robinson B.G., Clifton-Bligh R.J. et al. Clinical manifestations of paraganglioma syndromes types 1-5. J Endocrine-Related Cancer, 2015;22:91-103. doi: 10.1530/ERC-15-0268.
  14. Mtiller U. Pathological mechanisms and parent-of-origin effects in hereditary paraganglioma/pheochromocytoma (PGL/PCC). Neurogenetics, 2011 Aug;12(3):175-181. doi: 10.1007/s10048-011-0280-y.
  15. Jacobsen J., Grankvist K., Rasmuson T. et al. Expression of vascular endothelial growth factor protein in human renal cell carcinoma. BJU Int, 2004 93:297-302. doi: 10.1111/j.1464-410x.2004.04605.x.
  16. Lidgren A., Hedberg Y., Grankvist K. et al. Hypoxia-inducible factor 1alpha expression in renal cell carcinoma analyzed by tissue microarray. Eur Urol. 2006;50:1272-1277. doi: 10.1016/j.eururo.2006.05.043.
  17. Na X., Wu G, Ryan C.K., Schoen S.R. et al. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol., 2003;170:588-592. doi: 10.1097/01. ju.0000074870.54671.98.
  18. Wiesener M.S., Munchenhagen P.M., Berger I. et al. Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res., 2001;61:5215-5222.
  19. Eichelberg C., Junker K., Ljungberg B. et al. Diagnostic and Prognostic Molecular Markers for Renal Cell Carcinoma: A Critical Appraisal of the Current State of Research and Clinical Applicability. J European Urology, 2009;55:851-863. doi: 10.1016/j.eururo.2009.01.003.
  20. Hudes G., Carducci M., Tomczak P. et al. A phase 3, randomized, 3-arm study of temsirolimus (TEMSR) or interferonalpha (IFN) or the combination of TEMSR + IFN in the treatment of first-line, poor-risk patients with advanced renal cell carcinoma (adv RCC) [abstract]. J Clin Oncol. 2006;24(Suppl):LBA4
  21. Motzer R.J., Escudier B. Oudard S et al. RAD001 vs placebo in patients with metastatic renal cell carcinoma (RCC) after progression on VEGFr-TKI therapy: results from a randomized, double-blind, multicenter phase-III study [abstract]. J Clin Oncol 2008;26(Suppl):LBA5026.
  22. Youssif T., Tanguay S., Alam-Fahmy M. et al. Expression of PI3K/AKT/ mTOR pathway in renal cell carcinoma metastases: correlation with pathologic findings and survival. J Urol. 2008; 179:210.
  23. Dmitriev A., Rudenko E., Kudryavtseva A. et al. Epigenetic Alterations of Chromosome 3 Revealed by NotI-Microarrays in Clear Cell Renal Cell Carcinoma. J BioMed Research International. 2014; Article ID 735292. doi: 10.1155/2014/735292.
  24. Gunawan B., Huber W., Holtrup M. et al. Prognostic Impacts of Cytogenetic Findings in Clear Cell Renal Cell Carcinoma: Gain of 5q31-qter Predicts a Distinct Clinical Phenotype with Favorable Prognosis. J Cancer Research, 2001;61:7731-7738.
  25. Halat S., Eble J.N., Grignon D.J. et al. Multilocular cystic renal cell carcinoma is a subtype of clear cell renal cell carcinoma. Mod Pathol. 2010 Jul; 23(7):931-936. doi: 10.1038/modpathol.2010.78.
  26. von Teichman A., Comperat E., Behnke S. et al. VHL mutations and dysregulation of pVHL- and PTEN-controlled pathways in multilocular cystic renal cell carcinoma. Mod Pathol. 2011 ;24 (4):571-578. doi: 10.1038/modpathol.2010.222.
  27. Hakimi A.A., Tickoo S.K., Jacobsen A. et al. TCEB1-mutated renal cell carcinoma: a distinct genomic and morphological subtype. Mod Pathol., 2015 Jun;28(6):845-853. doi: 10.1038/modpathol.2015.6.
  28. Parilla M., Alikhan M., Segal J. et al. TCEB1-mutated renal cell carcinoma in relation to renal cell carcinoma with smooth muscle stroma in tuberous sclerosis complex. Journal of Clinical Oncology 36, no. 6_suppl (February 20, 2018) 699-699. doi: 10.1200/JCO.2018.36.6_suppl.699
  29. Saleeb R.M., Brimo F., Farag M. et al. Toward Biological Subtyping of Papillary Renal Cell Carcinoma With Clinical Implications Through Histologic, Immunohistochemical, and Molecular Analysis. American Journal of Surgical Pathology, 2017;41(12):1618-1629. Doi: 10.1097/ PAS.0000000000000962.
  30. Yang X.J, Tan M.H, Kim H.L. et al. A molecular classification of papillary renal cell carcinoma. Cancer Res., 2005;65(13):5628-5637. doi: 10.1158/0008-5472.CAN-05-0533.
  31. Brunelli M., Delahunt B., Gobbo S. et al. Diagnostic usefulness offluorescent cytogenetics in differentiating chromophobe renal cell carcinoma from renal oncocytoma: a validation study combining metaphase and interphase analyses. Am J Clin Pathol., 2010; 133(1):116-126. Doi: 10.1309/ AJCPSATJTKBI6J4N.
  32. Davis C.F., Ricketts C.J., Wang M.et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell, 2014;26(3):319-330. doi: 10.1016/j.ccr.2014.07.014.
  33. Petersson F., Gatalica Z., Grossmann P. et al. Sporadic hybrid oncocytic/ chromophobe tumor of the kidney: a clinicopathologic, histomorphologic, immunohistochemical, ultrastructural, and molecular cytogenetic study of 14 cases. Virchows Arch. 2010 Apr;456(4):355-365. doi: 10.1007/s00428-010-0898-4.
  34. Adam J., Couturier J., Molinie V. et al. Clear-cell papillary renal cell carcinoma: 24 cases of a distinct low-grade renal tumour and a comparative genomic hybridization array study of seven cases. Histopathology, 2011;58(7):1064-1071. doi: 10.1111/j.1365-2559.2011.03857.x.
  35. Rohan S.M., Xiao Y., Liang Y. et al. Clear cell papillary renal cell carcinoma: molecular and immunohistochemical analysis with emphasis on the von Hippel-Lindau gene and hypoxia-inducible factor pathway-related proteins. Mod Pathol., 2011;24(9): 1207-1220. Doi: 10.1038/ modpathol.2011.80.
  36. Lawrie C.H., Armesto M., Fernandez-Mercado M. et al. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms. J Mol Diagn., 2018;20(1):34-45. Doi: 10.1016/j. jmoldx.2017.09.002.
  37. Zhang W., Yu W.J., Xia Y. et al. Expression of carbonic anhydrase IX, PAX2 and PAX8 and their association with clinicopathologic characteristics in renal epithelial tumors. Zhonghua Bing Li Xue Za Zhi, 2013;42(7):442-445. doi: 10.3760/cma.j.issn.0529-5807.2013.07.003.
  38. Brandal P., Lie A.K., Bassarova A. et al. Genomic aberrations in mucinous tubular and spindle cell renal cell carcinomas. Mod Pathol. 2006;19(2):186- 194. doi: 10.1038/modpathol.3800499.
  39. Cossu-Rocca P., Eble J.N., Delahunt B. et al. Renal mucinous tubular and spindle carcinoma lacks the gains of chromosomes 7 and 17 and losses of chromosome Y that are prevalent in papillary renal cell carcinoma. Mod Pathol., 2006;19(4):488-493. doi: 10.1038/modpathol.3800565.
  40. Kuroda N., Yamashita M., Kakehi Y. et al. Acquired cystic disease-associated renal cell carcinoma: an immunohistochemical and fluorescence in situ hybridization study. Med Mol Morphol,. 2011 Dec; 44(4):228-232. doi: 10.1007/s00795-010-0496-1.
  41. Srigley J.R., Delahunt B., Eble J.N. et al. The International Society of Urological Pathology (ISUP) vancouver classification of renal neoplasia. Am J Surg Pathol., 2013;37( 10): 1469- 1489. Doi: 10.1097/ PAS.0b013e318299f2d1.
  42. Wang Y., Wang Yu., Feng M. et al. Renal cell carcinoma associated with Xp11.2 translocation/transcription factor E3 gene fusion: an adult case report and literature review. Journal of International Medical Research 48(10) 1-10. doi.org/10.1177/0300060520942095
  43. Magers M.J., Udager A.M., Mehra R. MiT family translocation -associated renal cell carcinoma: a contemporary update with emphasis on morphologic, immunophenotypic, and molecular mimics. Arch Pathol Lab Med. 2015;139(10):1224-1233. doi: 10.5858/arpa.2015-0196-RA.
  44. Rao Q., Shen Q., Xia Q.Y. et al. PSF/SFPQ is a very common gene fusion partner in TFE3 rearrangement-associated perivascular epithelioid cell tumors (PEComas) and melanotic Xp11 translocation renal cancers: clinicopathologic, immunohistochemical, and molecular characteristics suggesting classification as a distinct entity. Am J Surg Pathol., 2015;39(9):1181-1196. doi: 10.1097/PAS.0000000000000502.
  45. Pal S.K., Choueiri T.K., Wang K. et al. Characterization of Clinical Cases of Collecting Duct Carcinoma of the Kidney Assessed by Comprehensive Genomic Profiling. Eur Urol., 2016;70(3) 516-521. Doi: 10.1016/j. eururo.2015.06.019.
  46. Wang J., Papanicolau-Sengos A., Chintala S. et al. Collecting duct carcinoma of the kidney is associated with CDKN2A deletion and SLC family gene up-regulation. Oncotarget. 2016;7 (21):29901-29915. 10.18632/ oncotarget.9093.
  47. Beckermann K.E., Sharma D., Chaturvedi S. et al. Renal Medullary Carcinoma: Establishing Standards in Practice. J Oncol Pract., 2017 Jul;13(7):414-421. doi: 10.1200/JOP.2017.020909.
  48. Liu Q., Galli S., Srinivasan R. et al. Renal medullary carcinoma: molecular, immunohistochemistry, and morphologic correlation. Am J Surg Pathol., 2013;37(3):368-374. doi: 10.1097/PAS.0b013e3182770406.
  49. Marino-Enn'quez A., Ou W.B., Weldon C.B. et al. ALK rearrangement in sickle cell trait-associated renal medullary carcinoma. Genes Chromosomes Cancer. 2011 Mar;50(3):146-153. doi: 10.1002/gcc.20839.
  50. Mehra R., Vats P., Cao X. et al. Somatic Bi-allelic Loss of TSC Genes in Eosinophilic Solid and Cystic Renal Cell Carcinoma. Eur Urol., 2018;74(4):483-486. doi: 10.1016/j.eururo.2018.06.007.
  51. Palsgrove D.N., Li Y., Pratilas C.A. et al. Eosinophilic Solid and Cystic (ESC) Renal Cell Carcinomas Harbor TSC Mutations: Molecular Analysis Supports an Expanding Clinicopathologic Spectrum. Am J Surg Pathol, 2018 Sep;42(9):1166-1181. doi: 10.1097/PAS.0000000000001111
  52. Alaghehbandan R,, Montiel D.P, Luis As et al. Molecular Genetics of Renal Cell Tumors: A Practical Diagnostic Approach. J Cancers, 2020;12:85. doi: 10.3390/cancers12010085.
  53. Jung S.J., Chung J.I., Park S.H. et al. Thyroid follicular carcinoma-like tumor of kidney: a case report with morphologic, immunohistochemical, and genetic analysis. Am J Surg Pathol, 2006 Mar; 30(3):411-415. doi: 10.1097/01.pas.0000194745.10670.dd.
  54. Skala S.L., Dhanasekaran S., Mehra R. Hereditary Leiomyomatosis and Renal Cell Carcinoma Syndrome (HLRCC): A Contemporary Review and Practical Discussion of the Differential Diagnosis for HLRCC-Associated Renal Cell Carcinoma. J Archives of Pathology & Laboratory Medicine, 2018;142(10):1202-1215. doi: 10.5858/arpa.2018-0216-RA.
  55. Brodaczewska K., Bielecka Z, Maliszewska-Olejniczak K. et al. Metastatic renal cell carcinoma cells growing in 3D on poly-D-lysine or laminin present a stem-like phenotype and drug resistance. J Oncology Reports, 2019;42:1878-1892. doi: 10.3892/or.2019.7321.
  56. Corro C., Moch H. Biomarker discovery for renal cancer stem cells. J Pathol Clin Res. 2018;4(1):3-18. doi: 10.1002/cjp2.91.
  57. Yuan Z, Mo J, Zhao G et al. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells. J Frontiers in Pharmacology. 2016; 7 (423): 1-15. doi: 10.3389/fphar.2016.00423.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies