Physiology of autonomic regulation of kidney and bladder functions and its clinical significance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of a search in PubMed and Elibraru.ru databases using the keywords “autonomic regulation”, “kidney function”, “bladder function”, “ECG monitoring”, “PET/CT of the brain” are presented in the review. A regulation of bladder functions, control of blood pressure, heart rate and specialized functions of the nephron are discussed, which are in close relationship with the stem and cortical centers of the brain. The review presents an update at their cause-and-effect relationship and the place of each system in the formation of the general autonomic tone. The proposed integrative approach to the study of this problem will reveal previously unknown autonomous properties of the organs that form this physiological axis and determine the role of cortical dysfunction in the development of visceral pathology, which is fundamentally important for understanding the mechanisms of formation and recurrence of many urological diseases.

Full Text

Restricted Access

About the authors

V. B. Berdichevsky

FGBOU VO Tyumen State Medical University of the Ministry of Health of Russia

Author for correspondence.
Email: urotgmu@mail.ru
ORCID iD: 0000-0002-0186-6514
SPIN-code: 9768-5704

Ph.D., MD, associate professor at the Department of Oncology with a course of Urology

Russian Federation, Tyumen

B. A. Berdichevsky

FGBOU VO Tyumen State Medical University of the Ministry of Health of Russia

Email: doktor_bba@mail.ru
ORCID iD: 0000-0002-9414-8510
SPIN-code: 4630-3855

Ph.D., MD, professor at the Department of Oncology with a course of Urology

Russian Federation, Tyumen

Ye. V. Sapozhenkova

FGBOU VO Tyumen State Medical University of the Ministry of Health of Russia

Email: ekaterina_chibulaeva@mail.ru
ORCID iD: 0000-0003-2253-2297
SPIN-code: 7270-2232

Ph.D., associate professor at the Department of Normal Physiology

Russian Federation, Tyumen

V. A. Shidin

FGBOU VO Tyumen State Medical University of the Ministry of Health of Russia

Email: vshidin@mail.ru

Ph.D., associate professor of the Department of Histology

Russian Federation, Tyumen

A. R. Gonyaev

FGBOU VO Tyumen State Medical University of the Ministry of Health of Russia

Email: a.gonyaev25@yandex.ru
ORCID iD: 0000-0002-1619-4714

postgraduate student of the Department of Oncology with a course of Urology

Russian Federation, Tyumen

I. V. Pavlova

Medical Sanitary Department “Neftyanik”

Email: iraena@mail.ru

Ph.D., urologist

Russian Federation, Tyumen

A. L. Boldyrev

Regional Clinical Hospital No. 2

Email: boldyrev.a.l@yandex.ru

urologist

Russian Federation, Tyumen

References

  1. Lovrec P., Schuster D.M., Wagner R.H., Gabriel M., Savir-Baruch B. Characterizing and Mitigating Bladder Radioactivity on 18F-Fluciclovine PET/CT. J Nucl Med Technol. 2020;48(1):24–29. doi: 10.2967/jnmt.119.230581. Epub 2019 Oct 11. PMID: 31604898.
  2. Berdichevskiy V.B., Berdichevskiy B.A, Sultanbaev R.A. Kidneu transplant urodinamics: Neuro physiologic consideration. Journal of Transplantology and Artificial Organs. 2014;16(1):85. //doi.org/10.15825/1995-1191-2014-1-85-88
  3. Carrara M., Ferrario M., Bollen Pinto B. et al. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann. Intensive Care. 2021;11:80. https://doi.org/10.1186/s13613-021-00869-7
  4. Liang B., Liang Y., Li R. et al. Effect of renal denervation on long-term outcomes in patients with resistant hypertension. Cardiovasc Diabetol. 2021;20:117 . https://doi.org/10.1186/s12933-021-01309-3
  5. Li L., Xiong Y.L., Hu Z., Yao Y. Effect of Renal Denervation for the Management of Heart Rate in Patients With Hypertension: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022;8:810321. doi: 10.3389/fcvm.2021.810321.
  6. Ansari Usman S., Leecorresponding Benjamin J. Renal Denervation in Hypertension Methodist Debakey Cardiovasc J. 2021;17(1):73–74. doi: 10.14797/TPCC5120.
  7. Butani L., Berg G., Makker S.P. Microhematuria after renal transplantation in children. Pediatric Nephrology. 2002;17(12):1038–1041. https://doi.org/10.1007/s00467-002-1000-5
  8. Shane A. Bobart, Mariam P. Alexander, Khaled Shawwa. The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy Nephrol Dial Transplant. 2021;36(5):840–847. doi: 10.1093/ndt/gfz267.
  9. Peng He, Xiaoyong Y., Yang Zha. Microhematuria Enhances the Risks of Relapse and Renal Progression in Primary Membranous Nephropathy Front. Med., 09 December 2021 https://doi.org/10.3389/fmed.2021.704830
  10. Ardalana M., Argania Н., Mortazavia M. More urine is better after renal transplantation Transplantation Proceedings. 2003;35(7):2612–2613 https://doi.org/10.1016/j.transproceed.2003.09.060Joel
  11. Ranaweera Ruwan Arudchelvam Joel. Polyuria after Renal Transplantation: A Case Report and Review of Literature. June 2021Surgical Case Reports. doi: 10.31487/j.SCR.2021.06.01.
  12. Neranga Samarasinghe, Joel Arudchelvam, Ruwan Ranaweera, Mariathas Priatharshan. Polyuria after Renal Transplantation: A Case Report and Review of Literature. Surgical Case Reports. doi: 10.31487/j.SCR.2021.06.01.
  13. Buendia-Fuentes F. et al. Sympathetic reinnervation 1 year after heart transplantation, assessed using iodine-123 metaiodobenzylguanidine imaging. Transplant Proc. 2011;43:2247–2248. doi: 10.1016/j.transproceed.2011.05.020.
  14. Imamura T et al. Parasympathetic reinnervation accompaniedby improved post-exercise heart rate recovery and quality oflife in heart transplant recipients. Int Heart J. 2015;56:180–185. doi: 10.1536/ihj.14-292.
  15. Nicholas J. Montarello Tania Salehi Alex P. Bate Multimodality Tachycardia-Induced Stress Testing Predicts a Low-Risk Group for Early Cardiovascular Mortality After Renal Transplantation Open Access Published: October 22, 2020. Doi: https://doi.org/10.1016/j.ekir.2020.10.006.
  16. Torres S. Hayden, Huesing Clara. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Burk, 25 AUG 2021. https://doi.org/10.1152/ajpregu.00079.2021
  17. Christensen Anders., Nygaard Sissel, Rolid Katrine. Strong evidence for parasympathetic sinoatrial reinnervation after heart transplantation The Journal of Heart and Lung Transplantation Available online 15 November 2021 https://doi.org/10.1016/j.healun.2021.11.005.
  18. Korsgren O., Jansson L., Andersson A., Sundler F. Reinnervation of transplanted pancreatic islets. A comparison among islets implanted into the kidney, spleen, and liver. Transplantation, 01 Jul 1993, 56(1):138–143. PMID: 7687393.
  19. Hariharan S., Ajay K., Danovitch G. Long-Term Survival after Kidney Transplantation. N Engl J Med. 2021; 385:729–743 doi: 10.1056/NEJMra2014530/
  20. Gillian Divard and Valentin Goutaudier Global Perspective on Kidney Transplantation: France. October 2021;2 (10):1637–1640; Doi: https://doi.org/10.34067/KID.0002402021
  21. Raynaud M., Aubert O., Divard G. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study. Open Access Published: October 27, 2021 DOI::https://doi.org/10.1016/S2589-7500(21)00209-0
  22. Sarier M., Yayar O., Yavuz A. Update on the Management of Urological Problems Following Kidney Transplantation. Urol Int. 2021;105:541–547. https://doi.org/10.1159/000512885
  23. Li S.S. et al. A meta-analysis of renal outcomes in living kidney donors. Medicine (Baltimore). 2016;95:e3847.https://pubmed.ncbi.nlm.nih/gov/27310964.
  24. Matas A.J. et al. Causes and timing of end-stage renal disease after living kidney donation. Am. J Transplant. 2018;18:1140.https://pubmed.ncbi.nlm.nih.gov/29369517
  25. Locke J.E. et al. Obesity increases the risk of end-stage renal disease among living kidney donors. Kidney Int. 2017;91:699. https://pubmed.ncbi.nlm.nih.gov/28041626
  26. Allen P.J., Chadban S.J., Craig J.C., Lim WH., Allen R.D.M., Clayton P.A., et al. Recurrent glomerulonephritis after kidney transplantation: risk factors and allograft outcomes. Kidney Int. 2017;92(2):461–469. doi: 10.1016/j.kint.2017.03.015.
  27. Recurrent Crescentic Immunoglobulin A Nephropathy in the Graft Kidney Indian J Nephrol 2017; 27(5):335–336. doi: 10.4103/0971-4065.175982.
  28. Tang Z., Ji S.M., Chen D.R., Wen J.Q., Chen J.S., Liu Z.H., et al. Recurrent or de novo IgA nephropathy with crescent formation after renal transplantation. Ren Fail.2008;30:611–616. doi: 10.1080/08860220802134516.
  29. Deng R., Dai Y., Zhang H., Liu L., Li J., Xiong Y., et al. Higher Incidence of Renal Allograft Glomerulonephritis in Living Related Donor Kidney Transplantation. Transplant Proc. 2018;50(8):2421–2425. Doi:10. 1016/j.transproceed.2018.03.050.
  30. Halimi, Jean-Michela,; Ortiz, Albertoc; Sarafidis Hypertension in kidney transplantation: a consensus statement of the ‘hypertension and the kidney’ working group of the European Society of Hypertension. Journal of Hypertension: 2021;39(8):1513–1521. doi: 10.1097/HJH.0000000000002879.
  31. Lo[utradis C., Sarafidis P., Marinaki S. et al. Role of hypertension in kidney transplant recipients. J Hum Hypertens 35, 958–969 (2021). https://doi.org/10.1038/s41371-021-00540-5
  32. Schwotzer Nora, Wuerzner Gregoire Hypertension after kidney transplantation September 2021. Revue Médicale Suisse. 2021;17(750):1571–1574.
  33. Hansen J., Netter F. Netter's Atlas of Human Anatomy, 6th Edition, Philadelphia, Penn.: Sanders Elsevier. 2014;308-12, 316–318.
  34. Johnl E.? Norvell James Е.? Anderson М. Assessment of possible parasympathetic innervation of the kidney Journal of the Autonomic Nervous System. 1983;8(3):291–294.
  35. Zhang H., Reitz A., Kollias S., Summers P., Curt A, Schurch B. An fMRI study of the role of suprapontine brain structures in the voluntary voiding control induced by pelvic floor contraction. Neuroimage. 2005;24:174–180. doi: 10.1016/j.neuroimage.2004.08.027.
  36. Edward J. Johns. Autonomic regulation of kidney function. Handb Clin Neurol. 2013;117:203–214. doi: 10.1016/B978-0-444-53491-0.00017-1.
  37. John W. Osborn, Roman Tyshynsky, Lucy Vulchanova. Function of Renal Nerves in Kidney Physiology and Pathophysiology Annu Rev Physiol. 2021;83:429–450. doi: 10.1146/annurev-physiol-031620-091656.
  38. Alexander М., Biering-Sorensen F., Wyndaele J-JInternational standards to document remaining autonomic function after spinal cord injury Spinal Cord. 2009;47:36–43. https://doi.org/10.1038/sc.2008.121
  39. Tricia Adjei, Wilhelm von Rosenberg, Takashi Nakamura. The ClassA framework: HRV based assessment of SNS and PNS dynamics without LF-HF controversies. Frontiers in Physiology 10. doi: 10.3389/fphys.2019.00505.
  40. Khan A.A., Lip G.Y.H., Shantsila A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur J Clin Invest. 2019;49(11):e13174. doi: 10.1111/eci.13174.
  41. Bhaskar A., Oommen V. A simple model for demonstrating the factors affecting glomerular filtration rate. Adv Physiol Educ. 2018;42(2):380–382. doi: 10.1152/advan.00195.2017.
  42. Komlosi P., Bell P.D., Zhang Z.R. Tubuloglomerular feedback mechanisms in nephron segments beyond the macula densa. Curr Opin Nephrol Hypertens. 2009;18(1):57–62. doi: 10.1097/MNH.0b013e32831daf54
  43. Critchley Н., Christopher J. Mathias, Oliver Josephs. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126(10):2139–2152. https://doi.org/10.1093/ brain/awg216
  44. Wu W., Su Y., Huang H., Chen M., Fan F., Zhu D., Li K., Guo Z., Liang Z. and Huang H. Neuroimaging Study Investigating the Supraspinal Control of Lower Urinary Tract Function in Man With Orthotopic Ileal Neobladder. Front. Surg. 2021;8:751236. doi: 10.3389/fsurg.2021.751236.
  45. Griffiths D. Functional imaging of structures involved in neural control of the lower urinary tract. Handb Clin Neurol. 2015;130:121–133. doi: 10.1016/B978-0-444-63247-0.00007-9
  46. Fowler C.J., Griffiths D.J. A decade of functional brain imaging applied to bladder control. Neurourol Urodyn. 2010;29:49–55. doi: 10.1002/nau.20740.
  47. Nofzinger Е., Buysse Daniel J., Miewald Jean M. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking Brain. 2002;125(Pt 5):1105–1115. doi: 10.1093/brain/awf103.
  48. Berdichevsky V.B., Berdichevsky B.A. Complementari study of brain mеttabolism by combined posinron emission and computer tomography. International Journal of Radiology and Radiation Therapy. 2018;5(1):30.
  49. David M. Schuster, Cristina Nanni, Stefano Fanti. Anti-1-Amino-3-18F- Fluorocyclobutane-1-Carboxylic Acid: Physiologic Uptake Patterns, Incidental Findings, and Variants That May Simulate Disease J Nucl Med. 2014;55(12):1986–1992. doi: 10.2967/jnumed.114.143628.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies