3D reconstruction of prostate as the way to personalized surgical planning


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A brief overview of current data on the use of three-dimensional (3D) reconstructions of the prostate for preoperative planning of radical prostatectomy (RP) is provided in the article. Non-systematic literature review in PubMed and Embase was carried out. The original articles were selected dedicated the use of 3D reconstruction of the prostate prior to RP. The use of 3D modeling plays an important role in the personalized approach to surgical treatment, namely for RP. This technique provides detailed information regarding periprostatic anatomy, localization of positive biopsy specimens, the suspicious lesions, which in turn affects the incidence of positive surgical margins. 3D reconstruction of the prostate is a useful tool for surgical planning, physician education and patient consultation. However, the use of this method in routine clinical practice is difficult, since the preparation of the model is not automated and there is a lack of studies.

Full Text

Restricted Access

About the authors

R. I. Slusarenko

I.M. Sechenov First Moscow State Medical University

Author for correspondence.
Email: slusarenco.roman@gmail.com
ORCID iD: 0000-0002-8111-9446
SPIN-code: 4051-0916

urologist, Institute for Urology and Human Reproductive Health

Russian Federation, Moscow

Ya. A. Svetocheva

I.M. Sechenov First Moscow State Medical University

Email: svetochevaYA@yandex.ru
ORCID iD: 0009-0000-1797-9495

urologist, Ph.D. student, Institute for Urology and Human Reproductive Health

Russian Federation, Moscow

R. B. Sukhanov

I.M. Sechenov First Moscow State Medical University

Email: romsl@rambler.ru
ORCID iD: 0000-0002-3664-6108

Ph.D., urologist, assistant of the Institute for Urology and Human Reproductive Health

Russian Federation, Moscow

N. V. Petrovskii

I.M. Sechenov First Moscow State Medical University

Email: n_petrovskit@hotmail.com
ORCID iD: 0000-0003-0707-0469

Ph.D., associate professor, urologist, Institute for Urology and Human Reproductive Health

Russian Federation, Moscow

E. A. Bezrukov

I.M. Sechenov First Moscow State Medical University

Email: eabezrukov@rambler.ru
ORCID iD: 0000-0002-2746-5962
SPIN-code: 2208-2676

Ph.D., MD, professor, Head of the Urologic Department No.1, Institute for Urology and Human Reproductive Health

Russian Federation, Moscow

References

  1. Autorino R., Porpiglia F., Dasgupta P., Rassweiler J., Catto J.W., Hampton L.J., Lima E., Mirone V., Derweesh I.H., Debruyne F.M.J. Precision surgery and genitourinary cancers. Eur J Surg Oncol. 2017;43(5):893–908. doi: 10.1016/j.ejso.2017.02.005.
  2. European Association U., European Association of Urology Guidelines. 2019 Edition. Vol. presented at the EAU Annual Congress Barcelona 2019. 2019, Arnhem, The Netherlands: European Association of Urology Guidelines Office. 183–184.
  3. Shin T., Ukimura O., Gill I.S. Three-dimensional Printed Model of Prostate Anatomy and Targeted Biopsy-proven Index Tumor to Facilitate Nerve-sparing Prostatectomy. Eur Urol. 2016;69(2):377–379. doi: 10.1016/j.eururo.2015.09.024.
  4. Porpiglia F., Fiori C., Checcucci E., Amparore D., Bertolo R. Augmented Reality Robot-assisted Radical Prostatectomy: Preliminary Experience. Urology. 2018;115:184. doi: 10.1016/j.urology.2018.01.028.
  5. Alayev U.G., Terovoy S.K., Khokhlachov S.B., Akhvlediani N.D., Nagorny M.N., Fiyev D.N. Computer modeling in nephronsparing surgeries scheduling for kidney tumors. Medicinskij Vestnik Bashkortostana. 2010;5(4):29–35.
  6. Aljaev J.G., Sirota E.S., Fiev D.N., Proskura A.V. Computer-assisted surgery for renal tumors Urologiia. 2015(2):4–8. doi: 10.18565/urology.2018.3.30-38.
  7. Patel V.R., Sivaraman A., Coelho R.F., Chauhan S., Palmer K.J., Orvieto M.A., Camacho I., Coughlin G., Rocco B. Pentafecta: a new concept for reporting outcomes of robot-assisted laparoscopic radical prostatectomy. Eur Urol. 2011;59(5):702–707. doi: 10.1016/j.eururo.2011.01.032.
  8. Jager G.J., Ruijter E.T., van de Kaa C.A., de la Rosette J.J., Oosterhof G.O., Thornbury J.R., Barentsz J.O. Local staging of prostate cancer with endorectal MR imaging: correlation with histopathology. AJR Am J Roentgenol. 1996;166(4):845–852. doi: 10.2214/ajr.166.4.8610561.
  9. Fütterer J.J., Engelbrecht M.R., Huisman H.J., Jager G.J., Hulsbergen-van De Kaa C.A., Witjes J.A., Barentsz J.O. Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology. 2005;237(2):541–549. doi: 10.1148/radiol.2372041724.
  10. Rosenkrantz A.B., Shanbhogue A.K., Wang A., Kong M.X., Babb J.S., Taneja S.S. Length of capsular contact for diagnosing extraprostatic extension on prostate MRI: Assessment at an optimal threshold. J Magn Reson Imaging. 2016;43(4):990–997. doi: 10.1002/jmri.25040.
  11. Baco E., Rud E., Vlatkovic L., Svindland A., Eggesbo H.B., Hung A.J., Matsugasumi T., Bernhard J.C., Gill I.S., Ukimura O. Predictive value of magnetic resonance imaging determined tumor contact length for extracapsular extension of prostate cancer. J Urol. 2015;193(2):466–472. doi: 10.1016/j.juro.2014.08.084.
  12. Knoedler J.J., Karnes R.J., Thompson R.H., Rangel L.J., Bergstralh E.J., Boorjian S.A. The association of tumor volume with mortality following radical prostatectomy. Prostate Cancer Prostatic Dis. 2014;17(2):144–148. doi: 10.1038/pcan.2013.61.
  13. Lim C., Flood T.A., Hakim S.W., Shabana W.M., Quon J.S., El-Khodary M., Thornhill R.E., El Hallani S., Schieda N. Evaluation of apparent diffusion coefficient and MR volumetry as independent associative factors for extra-prostatic extension (EPE) in prostatic carcinoma. J Magn Reson Imaging. 2016;43(3):726–736. doi: 10.1002/jmri.25033.
  14. Rothke M., Blondin D., Schlemmer H.P., Franiel T. [PI-RADS classification: structured reporting for MRI of the prostate]. Rofo. 2013;185(3):253–261. doi: 10.1055/s-0032-1330270.
  15. Weinreb J.C., Barentsz J.O., Choyke P.L., Cornud F., Haider M.A., Macura K.J., Margolis D., Schnall M.D., Shtern F., Tempany C.M., Thoeny H.C., Verma S. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. Eur Urol. 2016;69(1):16–40. doi: 10.1016/j.eururo.2015.08.052.
  16. Ukimura O., Gill I.S. Imaging-assisted endoscopic surgery: Cleveland Clinic experience. J Endourol. 2008;22(4):803–810. doi: 10.1089/end.2007.9823.
  17. Ukimura O., Aron M., Nakamoto M., Shoji S., Abreu A.L., Matsugasumi T., Berger A., Desai M., Gill I.S. Three-dimensional surgical navigation model with TilePro display during robot-assisted radical prostatectomy. J Endourol. 2014;28(6):625–630. doi: 10.1089/end.2013.0749.
  18. Jomoto W., Tanooka M., Doi H., Kikuchi K., Mitsuie C., Yamada Y., Suzuki T., Yamano T., Ishikura R., Kotoura N., Yamamoto S. Development of a Three-dimensional Surgical Navigation System with Magnetic Resonance Angiography and a Three-dimensional Printer for Robot-assisted Radical Prostatectomy. Cureus. 2018;10(1):e2018. doi: 10.7759/cureus.2018.
  19. Chandak P., Byrne N., Lynch H., Allen C., Rottenberg G., Chandra A., Raison N., Ahmed H., Kasivisvanathan V., Elhage O., Dasgupta P. Three-dimensional printing in robot-assisted radical prostatectomy – an Idea, Development, Exploration, Assessment, Long-term follow-up (IDEAL) Phase 2a study. BJU Int. 2018;122(3):360–361. doi: 10.1111/bju.14189.
  20. Porpiglia F., Checcucci E., Amparore D., Autorino R., Piana A., Bellin A., Piazzolla P., Massa F., Bollito E., Gned D., De Pascale A., Fiori C. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D) technology: a radiological and pathological study. BJU Int. 2019;123(5):834–845. doi: 10.1111/bju.14549
  21. Porpiglia F., Checcucci E., Amparore D., Manfredi M., Massa F., Piazzolla P., Manfrin D., Piana A., Tota D., Bollito E., Fiori C. Three-dimensional Elastic Augmented-reality Robot-assisted Radical Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology: A Step Further in the Identification of Capsular Involvement. Eur Urol. 2019;76(4):505–514. doi: 10.1016/j.eururo.2019.03.037

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. mpMRI of the small pelvis, the contact length of the suspicious area with the prostate capsule is 2 cm (Vaso et al. 2015). The suspicious area is circled with a white dotted line, the red line and arrow mark the localization of the contact of the suspicious area with the prostate capsule

Download (75KB)
3. Fig.2. Digitized histological preparation - prostate gland (Vaso et al. 2015). The black line circles the areas of acinar adenocarcinoma of the prostate. the black dotted line with arrows marks the extent of contact of the area of acinar adenocarcinoma of the prostate with the capsule at the site of extracapsular spread

Download (55KB)
4. Fig.3. Schematic zonal structure of the prostate according to the PI-RADS system [15]

Download (63KB)
5. Fig.4. MRI T2-WI with a suspicious focus in the right lobe in close proximity to the prostate capsule

Download (98KB)
6. Fig.5. Digitized histological preparation of the prostate gland. The black dotted line outlines the site of acinar adenocarcinoma of the prostate. Coincidence of the localization of the site of acinar adenocarcinoma of the prostate with MRI data was noted

Download (77KB)
7. Fig.6. Printed 3D translucent virtual model of the prostate, suspicious lesion and neurovascular bundle

Download (52KB)
8. Fig.7. Virtual three-dimensional model of the prostate. A - rigid, B - elastic. Blue arrows indicate the possibility of virtual reshaping of the prostate due to virtual traction

Download (102KB)

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies