The use of laser doppler flowmetry to assess the microcirculation of the kidney before and after percutaneous nephrolithotomy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Aim. To evaluate intraoperative changes in renal microcirculation during percutaneous nephrolithotomy (PCNL), as well as its dynamics in the early postoperative period.

Materials and methods. A total of 240 patients treated in the Urology Clinic of the Saratov State Medical University in 2021-2022 were included in the study. All patients underwent PCNL. In the first group (n=105) the standard PCNL through 30 Ch access was done. In the second group (n=135), the procedure was performed through an access of 16 Ch. Intraoperatively, intrapelvic pressure was evaluated according to the author’s method, which consists in direct measurement in the collecting system during the procedure, allowing for a faster and more accurate assessment. Prior to surgery, Doppler mapping of the renal blood flow was performed, and indirect registration of the microcirculation index (MCI) was done directly on the operating table using laser Doppler flowmetry (LDF). The diagnostic study was performed at the point of intersection of the 12th rib and the psoas muscle, both on the ipsilateral and contralateral side. In addition, during the procedure, a registration of MI of the mucosa of the calyceal fornix accessible in the direct vision through the access tract for 4 minutes was carried out twice.

Results. The index of microcirculation (IM) in the fornix of the upper calyx before the fragmentation of the stone in the 1st group of patients was 26.67±4.7 pf.u. compared to 25.4±5.9 pf.u. in the second group. At the same time, the value recorded on the skin was 13.08±1.2 pf.u. in the first group compared to 13.1±0.77 pf.u. in the second group (p>0.05). During the initial registration, the PM immediately after stone fragmentation was 19.5 ± 1.2 pf.u, while on the overlying skin it was 11.2 ± 0.9 pf.u. In the contralateral kidney area, IM was 10.2±0.9 pf.u. In the case of an intraoperative increase in intrapelvic pressure, IM was 22.3±1.6 pf.u. compared to 12.1±0.7 pf.u on the skin. The dynamics of IM on the skin tended to further decrease and returned to normal values of 10.3 ± 0.7 pf.u on the 3rd day. When intraoperative intrapelvic pressure exceeded the normal value, IM by the 5th day was 10.1±0.4 pf.u. When determining the correlation of IM with RI of the ipsilateral kidney, a direct moderate correlation was revealed (r=+0.516).

Conclusion. The measurement of microcirculation in the intra- and postoperative period allows to assess changes in the intrarenal microcirculation both directly and indirectly. This method can be used as an additional tool for assessing obstructive changes and the activity of pyelonephritis. A significant correlation between IM and RI indicates that functional changes in the renal and skin microcirculation tend to develop simultaneously.

Full Text

Restricted Access

About the authors

D. N. Khotko

FGBOU VO “Saratov State University named after V.I. Razumovsky” of Ministry of Health of Russia

Author for correspondence.
Email: dnksar@list.ru
ORCID iD: 0000-0002-7966-5181

Ph.D., Head of Urologic Department

Russian Federation, Saratov

A. I. Khotko

FGBOU VO “Saratov State University named after V.I. Razumovsky” of Ministry of Health of Russia

Email: dnksar@list.ru
ORCID iD: 0000-0002-4569-9906

Ph.D., Assistant of the Department of Urology

Russian Federation, Saratov

V. M. Popkov

FGBOU VO “Saratov State University named after V.I. Razumovsky” of Ministry of Health of Russia

Email: dnksar@list.ru
ORCID iD: 0000-0003-2876-9607

Ph.D., MD, Head of the Department of Urology

Russian Federation, Saratov

A. I. Tarasenko

FGAOU VO I.M. Sechenov First Moscow State Medical University

Email: dnksar@list.ru
ORCID iD: 0000-0002-3258-8174

Ph.D., Deputy Director for Innovative Development of the Institute of Urology and Reproductive Health

Russian Federation, Moscow

A. V. Kuligin

FGBOU VO “Saratov State University named after V.I. Razumovsky” of Ministry of Health of Russia

Email: dnksar@list.ru
ORCID iD: 0000-0001-5705-215X

Ph.D., MD, Head of the Department of Emergency Anesthesia and Resuscitation and Simulation Technologies in Medicine

Russian Federation, Saratov

G. V. Podrezova

FGBOU VO “Saratov State University named after V.I. Razumovsky” of Ministry of Health of Russia

Email: dnksar@list.ru
ORCID iD: 0009-0007-2674-068X

Ph.D. student of the Department of Emergency Anesthesia and Resuscitation and Simulation Technologies in Medicine

Russian Federation, Saratov

A. O. Efimova

State public institution «Central Clinical Hospital of the Federal Customs Service of Russia»

Email: dnksar@list.ru
ORCID iD: 0000-0002-0548-8231

Ph.D., dermatologist and venerologist

Russian Federation, Moscow

References

  1. Sila-asna M., Bunyaratvej A., Futrakul P., Futrakul N. Renal microvascular abnormality in chronic kidney disease. Ren Fail. 2006;28(7):609–610. doi: 10.1080/08860220600839498.
  2. Kovaleva M.A., Zhmerenetskiy K.V. A review of direct methods for studying microcirculation and evaluating the data obtained. Journal. medical biol. research. 2020;8(1):79–88. doi: 10.17238/issn2542-1298.2020.8.1.79
  3. Coulon P., Constans J., Gosse P. Impairment of skin blood flow during post-occlusive reactive hyperhemy assessed by laser doppler flowmetry correlates with renal resistive index. J Hum Hypertens. 2012;26:56–63. doi: 10.1038/jhh.2010.117.
  4. Postnov D.D., Sosnovtseva O., Tuchin V.V. Improved detectability of microcirculatory dynamics by laser speckle flowmetry. J Biophotonics. 2015;8:790–794. doi: 10.1002/jbio.201500152.
  5. Rivera M., Viers B., Cockerill P., Agarwal D., Mehta R., Krambeck A.J. Pre- and postoperative predictors of infection-related complications in patients undergoing percutaneous nephrolithotomy. Endourol 2016;30(9):982–986. doi: 10.1089/end.2016.0191.
  6. Khotko D.N., Khotko A.I., Popkov V.M., Tarasenko A.I., Efimova A.O. The role of intraoperative intrarenal pressure in the postoperative period of percutaneous nephrolithotripsy in patients with urolithiasis. Experimental and Clinical Urology 2022;15(3)82–87; https://doi.org/10.29188/2222-8543-2022-15-3-82-87.
  7. Guo H.Q., Shi H.L., Li X.G., Gan W.D., Zeng L.Q., Liu G.X., et al. Relationship between the intrapelvic perfusion pressure in minimally invasive percutaneous nephrolithotomy and postoperative recovery. Zhonghua Wai Ke Za Zhi 2008;46(1):52–54.
  8. Jung H., Osther P.J. Intraluminal pressure profiles during flexible ureterorenoscopy. Springerplus 2015(4):373. https://doi.org/10.1186/s40064-015-1114-4
  9. Doizi S., Letendre J., Cloutier J., Ploumidis A., Traxer O. Continuous monitoring of intrapelvic pressure during flexible ureteroscopy using a sensor wire: a pilot study. World J Urol 2021;39(4):1257–1262. https://doi.org/10.1007/s00345-020-03287-9
  10. Патент на изобретение № 2 788 282 C1, Российская Федерация, МПК A61B 5/03 (2006.01), A61B 18/00 (2006.01). Способ интраоперационного определения внутрилоханочного давления при перкутанной литотрипсии у больных мочекаменной болезнью/Хотько Д.Н., Хотько А.И., Попков В.М., Тарасенко А.И.; патентообладатели: ФГБОУ ВО «Саратовский ГМУ им. В.И. Разумовского» Минздрава России – 2022116373, заявл. 17.06.2022, опубл. 17.01.2023 Бюл. № 2].
  11. Csaba Kopitkó, Tibor Gondos, Tibor Fülöp, László Medve. Reinterpreting Renal Hemodynamics: The Importance of Venous Congestion and Effective Organ Perfusion in Acute Kidney Injury. Am J Med Sci. 2020;359(4):193–205. doi: 10.1016/j.amjms.2020.01.012.
  12. Praga M., Sevillano A., Auñón P., González E. Changes in the aetiology, clinical presentation and management of acute interstitial nephritis, an increasingly common cause of acute kidney injury. Nephrol Dial Transplant. 2015;9(30):1472–1479.
  13. Herness J., Buttolph A., Hammer N.C. Acute Pyelonephritis in Adults: Rapid Evidence Review. Am Fam Physician. 2020;102(3):173–180.
  14. Hudson C., Mortimore G. The diagnosis and management of a patient with acute pyelonephritis.Br J Nurs. 2020;29(3):144–150. doi: 10.12968/bjon.2020.29.3.144.
  15. Гажонова В.Е., Зыкова А.С., Чистяков А.А., Рощупкина С.В., Романова М.Д., Краснова Т.Н. Прогностическое значение индекса резистентности сосудов почек в оценке прогрессирования хронической болезни почек. Терапевтический архив. 2015;87(6):29–33.
  16. Matthias Maruschke, Katja Hagel, Oliver Hakenberg, Thomas Scheeren. Prognostic value of intraoperative measurements of renal tissue oxygenation and microcirculation on renal function in partial nephrectomy. Clinical Trial Clin Exp Nephrol. 2018;22(3):735–742. doi: 10.1007/s10157-017-1506-6.
  17. Cynthia Xu, Frank W Sellke, M Ruhul Abid. Assessments of microvascular function in organ systems. Am J Physiol Heart Circ Physiol. 2022;322(6):H891–H905. doi: 10.1152/ajpheart.00589.2021.
  18. Andor W.J.M. Glaudemans, Thomas C. Kwee, Riemer H.J.A. Slart. The Diabetic Foot. Curr Pharm Des. 2018;24(12):1241–1242. doi: 10.2174/1381612824666180302143056.
  19. Gojka Roglic, Nigel Unwin, Peter H Bennett, Colin Mathers, Jaakko Tuomilehto, Satyajit Nag, Vincent Connolly, Hilary King. The burden of mortality attributable to diabetes: realistic estimates for the year 2000. Diabetes Care. 2005;28(9):2130–2135. doi: 10.2337/diacare.28.9.2130.
  20. Jolanta Neubauer-Geryk, Magdalena Hoffmann, Melanie Wielicka, Katarzyna Piec, Grzegorz Kozera, Leszek Bieniaszewski. Current methods for the assessment of skin microcirculation: Part 2. Postepy Dermatol Alergol 2019;36(4):377–381. doi: 10.5114/ada.2019.83657. Epub 2019 Aug 30.
  21. Stücker M., Steinberg J., Memmel U., Avermaete A., Hoffmann K., Altmeyer P. Differences in the two-dimensionally measured laser Doppler flow at different skin localisations. Skin Pharmacol Appl Skin Physiol 2001;14(1):44–51. doi: 10.1159/000056333.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies