Study of allelic variants of the CYP2D6 and CYP3A genes on the effectiveness and safety of tamsulosin therapy in patients with BPH: results of a pilot study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. Tamsulosin is a member of the group of selective α1-adrenoblockers. Tamsulosin monotherapy is the most common first-line option in patients with lower urinary tract symptoms (LUTS) associated with benign prostatic hyperplasia (BPH) and can be used regardless on severity of LUTS. The CYP2D6, CYP3A4, and CYP3A5 enzymes are involved in the metabolism of tamsulosin. Carriage of different allelic variants of CYP2D6, CYP3A4 and CYP3A5, involved in its metabolism, may potentially affect the variability of efficacy and safety of the drug.

Aim. To evaluate the effect of carriage of allelic variants of cytochrome P450 superfamily enzyme genes (CYP2D6*3, CYP2D6*4, CYP2D6*9, CYP2D6*10, CYP2D6*41, CYP3A4*3, CYP3A4*22 and CYP3A5*3) on the efficiency and safety of tamsulosin in patients with LUTS associated with BPH.

Materials and Methods. All phases of the study were completed by 106 patients with LUTS/BPH (N40 according to ICD 10). All patients received monotherapy with tamsulosin 0.4 mg/day for a minimum of 8 weeks. Based on the severity of symptoms, they were divided into two groups using the International Prostate Symptom Score (IPSS). In Group 1, there were patients with moderate symptoms (IPSS score of 8-19) (n=57), while Group 2 consisted of those with severe symptoms (IPSS score >20) (n=49). Treatment outcomes were assessed using the IPSS score with determination of quality of life (QoL), transrectal ultrasound with evaluation of prostate volume and residual urine, and uroflowmetry. Follow-up visits were at 2, 4, and 8 weeks after the start of therapy. Genotyping of all patients was performed using polymerase chain reaction to determine the CYP2D6 (*3, *4, *9, *10, and *41), CYP3A4 (*3, *22), and CYP3A5*3 markers.

Results. In the group of patients with moderate symptoms, carriers of the CYP2D6*10 and CYP2D6*41 polymorphisms showed a significantly greater reduction in symptoms according to the overall IPSS score at 8 weeks (p=0.046) and in the micturition symptom subscale starting from 4 weeks of treatment (p<0.05). Carriers of the CYP2D6*10 polymorphism in both groups were associated with a decrease in residual urine volume at 8 weeks (p<0.05). The presence of the CYP3A5*3 variant in those with severe symptoms significantly improved quality of life during therapy. Allelic variants of the CYP2D6 and CYP3A genes did not affect the frequency of adverse events.

Conclusion. The results obtained by calculating the prognostic significance of individual polymorphic markers pointed to the contribution of CYP2D6*10 and CYP2D6*41. Tamsulosin therapy is more effective in patients with LUTS who are carriers of these allele variants. The safety parameters of tamsulosin were not influenced by the studied polymorphic variants. It was found that CYP3A5*3 was associated with an increase in the subjective assessment of the patient's quality of life, but it is too early to draw final conclusions. The issue of the contribution of genetic factors to the efficiency and safety of treatment of LUTS in BPH requires further study with a larger sample size and analyzed parameters.

Full Text

Restricted Access

About the authors

Sh. P. Abdullaev

Russian Medical Academy of Continuing Professional Education

Email: luon@mail.ru

postgraduate student, Department of endoscopic urology

Russian Federation, Moscow

M. N. Shatokhin

Russian Medical Academy of Continuing Professional Education; Private healthcare institution «Central clinical hospital «RZD-Medicine» (NUZ NKC OAO “RJD”)

Author for correspondence.
Email: sh.77@mail.ru

Ph.D., MD, Professor, Department of endoscopic urology

Russian Federation, Moscow; Moscow

S. N. Tuchkova

Russian Medical Academy of Continuing Professional Education

Email: Svetlana.tuch1998@gmail.com

laboratory assistant, Predictive and Prognostic Biomarkers Department

Russian Federation, Moscow

Sh. P. Abdullaev

Russian Medical Academy of Continuing Professional Education

Email: abdullaevsp@gmail.com

Ph.D., Head of the Department of Predictive and Prognostic Biomarkers

Russian Federation, Moscow

O. V. Teodorovich

Russian Medical Academy of Continuing Professional Education; Private healthcare institution «Central clinical hospital «RZD-Medicine» (NUZ NKC OAO “RJD”)

Email: teoclinic1@gmail.com

Ph.D., MD, Professor, Head of the Department of Endoscopic Urology

Russian Federation, Moscow; Moscow

O. B. Loran

Russian Medical Academy of Continuing Professional Education

Email: olegloran@gmail.com

Academician of the Russian Academy of Sciences, Ph.D., MD, Professor, Head of the Department of Urology and Surgical Andrology

Russian Federation, Moscow

D. А. Sychev

Russian Medical Academy of Continuing Professional Education

Email: dmitry.alex.sychev@gmail.com

Academician of the Russian Academy of Sciences, Ph.D., MD, Professor, Professor of the Russian Academy of Sciences, Head of the Department of Clinical Pharmacology and Therapy of Academician B.E. Votchal

Russian Federation, Moscow

References

  1. Lee S.W.H., Chan E.M.C., Lai Y.K. The global burden of lower urinary tract symptoms suggestive of benign prostatic hyperplasia: A systematic review and meta-analysis. Sci Rep. 2017;7(1):7984. Published 2017 Aug 11. doi: 10.1038/s41598-017-06628-8.
  2. Chute C.G., Panser L.A., Girman C.J., et al. The prevalence of prostatism: a population-based survey of urinary symptoms. J Urol. 1993;150(1):85-89. doi: 10.1016/s0022-5347(17)35405-8.
  3. Cornu J.N. (Chair), Gacci M., Hashim H. et al. Guidelines on Male Lower Urinary Tract Symptoms (LUTS), including Benign Prostatic Obstruction (BPO). Eur. Assoc. Urol. 1-106 (2023).
  4. Michel M.C., Kenny B., Schwinn D.A. Classification of alpha 1-adrenoceptor subtypes. Naunyn Schmiedebergs Arch Pharmacol. 1995;352(1):1-10. doi: 10.1007/BF00169183
  5. Roehrborn CG. Efficacy of alpha-Adrenergic Receptor Blockers in the Treatment of Male Lower Urinary Tract Symptoms. Rev Urol. 2009;11(Suppl. 1):S1-S8.
  6. Kim K.A., Park I.B., Park J.Y. Effects of CYP2D6 and CYP3A5 genetic polymorphisms on steady-state pharmacokinetics and hemodynamic effects of tamsulosin in humans. Eur J Clin Pharmacol. 2018;74(10):1281-1289. doi: 10.1007/s00228-018-2501-x.
  7. Choi C.I., Bae J.W., Jang C.G., Lee S.Y. Tamsulosin exposure is significantly increased by the CYP2D6*10/*10 genotype. J Clin Pharmacol. 2012;52(12):1934-1938. doi: 10.1177/0091270011432168.
  8. Villapalos-García G., Zubiaur P., Navares-Gómez M., et al. Effects of Cytochrome P450 and Transporter Polymorphisms on the Bioavailability and Safety of Dutasteride and Tamsulosin. Front Pharmacol. 2021;12:718281. Published 2021 Oct 7. doi: 10.3389/fphar.2021.718281.
  9. Crews K.R., Monte A.A., Huddart R., et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin Pharmacol Ther. 2021;110(4):888-896. doi: 10.1002/cpt.2149.
  10. Thorn C.F., Klein T.E., Altman R.B. PharmGKB: The Pharmacogenetics and Pharmacogenomics Knowledge Base. in Pharmacogenomics 179–192 (Humana Press). doi: 10.1385/1-59259-957-5:179.
  11. Kuehl P., Zhang J., Lin Y., et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383-391. doi: 10.1038/86882.
  12. Scott S.A., Sangkuhl K., Stein C.M., et al. Clinical Pharmacogenetics Implementation Consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin Pharmacol Ther. 2013;94(3):317-323. doi: 10.1038/clpt.2013.105.
  13. Mega J.L., Close S.L., Wiviott S.D., et al. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON-TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010;376(9749):1312-1319. doi: 10.1016/S0140-6736(10)61273-1.
  14. Ramsey L.B., Johnson S.G., Caudle K.E., et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014;96(4):423-428. doi: 10.1038/clpt.2014.125.
  15. Kanuri S.H., Kreutz R.P. Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants. J Pers Med. 2019;9(1):7. Published 2019 Jan 17. doi: 10.3390/jpm9010007.
  16. Muir A.J., Gong L., Johnson S.G., et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for IFNL3 (IL28B) genotype and PEG interferon-α-based regimens. Clin Pharmacol Ther. 2014;95(2):141-146. doi: 10.1038/clpt.2013.203.
  17. Butler M.G. Pharmacogenetics and Psychiatric Care: A Review and Commentary. J Ment Health Clin Psychol. 2018;2(2):17-24.
  18. Zhang Y., Somtakoune S.D., Cheung C., Listiawan M., Feng X. Therapeutic Application of Pharmacogenomics in Oncology. AAPS J. 2016;18(4):819-829. doi: 10.1208/s12248-016-9926-x.
  19. Rasner P.I., Pushkar’ D.Iu. Lechenie simptomov nizhnikh mochevykh putei u patsientov s dobrokachestvennoi giperplaziei predstatel’noi zhelezy: sovremennye mezhdunarodnye standarty. Sprav. poliklin. vracha. 2015; 10: 20–6. Russian (Раснер П.И., Пушкарь Д.Ю. Лечение симптомов нижних мочевых путей у пациентов с доброкачественной гиперплазией предстательной железы: современные международные стандарты. Справ. поликлин. врача. 2015:10;20-6).
  20. Pushkar’ D.Y., Rasner P.I., Kharchilava R.R. Lower urinary tract symptoms and benign prostatic hyperplasia. Urologiia. 2016;(2 Suppl 2):4-19. Russian (Д.Ю. Пушкарь, П.И. Раснер, Р.Р. Харчилава. Симптомы нижних мочевыводящих путей и доброкачественная гиперплазия предстательной железы. Урология. 2016;(2 приложение 2): 4-19).
  21. Roehrborn C.G., Schwinn D.A. Alpha1-adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. J Urol. 2004;171(3):1029-1035. doi: 10.1097/01.ju.0000097026.43866.cc.
  22. Wilt T.J., MacDonald R., Nelson D. Tamsulosin for treating lower urinary tract symptoms compatible with benign prostatic obstruction: a systematic review of efficacy and adverse effects. J Urol. 2002;167(1):177-183.
  23. Brockmöller J., Tzvetkov M.V. Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment. Eur J Clin Pharmacol. 2008;64(2):133-157. doi: 10.1007/s00228-007-0424-z.
  24. Mini E., Nobili S. Pharmacogenetics: implementing personalized medicine. Clin Cases Miner Bone Metab. 2009;6(1):17-24.
  25. Samani N.J., Tomaszewski M., Schunkert H. The personal genome--the future of personalised medicine?. Lancet. 2010;375(9725):1497-1498. doi: 10.1016/S0140-6736(10)60598-3.
  26. CYP2D6 CPIC guidelines [Электронный ресурс] URL: https://cpicpgx.org/gene/cyp2d6/
  27. Collins F.S., Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793-795. doi: 10.1056/NEJMp1500523.
  28. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6-13. doi: 10.1038/sj.tpj.6500285.
  29. Boehringer Ingelheim GmbH (2016) Flomax (tamsulosin hydrochloride). Highlights of prescribing information. http://bidocs.boehringer-ingelheim.com/BIWebAccess/ViewServlet.ser?docBase=renetnt&folderPath=/Prescribing+Information/PIs/Flomax+Caps/Flomax.pdf. Assessed 22 May 2018.
  30. Franco-Salinas G., de la Rosette J.J., Michel M.C. Pharmacokinetics and pharmacodynamics of tamsulosin in its modified-release and oral controlled absorption system formulations. Clin Pharmacokinet. 2010;49(3):177-188. doi: 10.2165/11317580-000000000-00000.
  31. Troost J., Tatami S., Tsuda Y., et al. Effects of strong CYP2D6 and 3A4 inhibitors, paroxetine and ketoconazole, on the pharmacokinetics and cardiovascular safety of tamsulosin. Br J Clin Pharmacol. 2011;72(2):247-256. doi: 10.1111/j.1365-2125.2011.03988.x.
  32. Clarke T.A., Waskell L.A. The metabolism of clopidogrel is catalyzed by human cytochrome P450 3A and is inhibited by atorvastatin. Drug Metab Dispos. 2003;31(1):53-59. doi: 10.1124/dmd.31.1.53.
  33. Smirnov V.V. Development of methods for determining cortisol and 6-β-hydroxycortisol in urine in order to establish the activity of CYP 3A4 isoenzyme. Author’s thesis for the degree of candidate of pharm. sciences. 2011. Russian (Смирнов В. В. Разработка методики определения кортизола и 6-βгидроксикортизола в моче с целью установления активности изофермента CYP 3A4. Автореф. диссертации на степень канд. фарм. наук. 2011).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1.

Download (127KB)
3. Fig. 2.

Download (102KB)

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies