Non-biological simulator for training intrarenal navigation during retrograde intrarenal surgery

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The most complex stage of retrograde intrarenal surgery (RIRS) is intrarenal navigation in the collecting system. The existing simulators for training have drawbacks or are unavailable, so a non-biological simulator was developed to teach the technique of this procedure.

Aim. To provide the characteristics of the developed non-biological simulator for teaching the RIRS technique and the results of its testing.

Materials and methods. We have developed a non-biological simulator for teaching the RIRS technique, the main part of which is a quadrangular box of 60 × 30 cm, having special internal recesses for models of the bladder, ureters and 3D-collecting system, as well as transparent and dark covers. The simulator has three or more pairs of 3D-models of the collecting system. After the insertion of the ureteral access sheath and instructions from an expert urologist at the RIRS, a training session with 15 urologists (10 without experience and 5 with experience in endourology, except for the RIRS) was carried out. Intrarenal navigation with inspection of all groups of calyces was initially performed with the simulator closed with a transparent top, while the trainee looked at the 3D model of the kidney itself. Then the training continued with an opaque top and the physician looked only at the video monitor. Ten navigations were performed on each side. The navigation time from the moment of insertion of the flexible ureteroscope into the renal pelvis was determined.

Results. A total of 268 intrarenal navigations were performed (134 on each side). Thirty-two (10.7%) tests were not completed, since 6 and 4 urologists stopped the training on the 8th and 9th tests, showing the minimum navigation time. For all trials, the average navigation time was 155.8±92.4 s, and it significantly decreased from 252.6±107.0 in the first to 94.5±34.0 s in the last attempt (p<0.001). In experienced physicians, the navigation time decreased from 185.0±52.4 to 85.6±26.8 s (p=0.045), while in inexperienced urologists from 290.5±109.6 to 96.7±35.4 s (p<0.0001). The experienced urologists demonstrated better results in the initial test compared to the inexperienced group (185.0±52.4 s vs. 290.5±109.6 s, p=0.037), but after training, the navigation time in the final test did not differ (85.6±26.8 s vs. 96.7±35.4 s, p=0.984).

Conclusions. Our non-biological simulator allows to improve surgical skills in RIRS. The obtained results show that both experienced and inexperienced urologists significantly improve their skills in the navigation in the collecting system.

Full Text

Restricted Access

About the authors

B. G. Guliev

FGBOU VO Pavlov First Saint Petersburg State Medical University of the Ministry of Health of Russia; City Mariinsky hospital

Author for correspondence.
Email: gulievbg@mail.ru
ORCID iD: 0000-0002-2359-6973

Ph.D., MD, professor, professor at the Department of Urology, Head of Center of Urology with robot-assisted surgery

Russian Federation, Saint Petersburg; Saint Petersburg

M. U. Agagyulov

FGBOU VO North-Western State Medical University named after I.I. Mechnikov

Email: gulievbg@mail.ru
ORCID iD: 0000-0001-9647-9690

Ph.D. student at the Department of Urology

Russian Federation, Saint Petersburg

A. E. Talyshinsky

City Mariinsky hospital

Email: ali-ma@mail.ru
ORCID iD: 0000-0002-3521-8937

urologist at the Center of Urology with robot-assisted surgery

Russian Federation, Saint Petersburg

A. A. Andrianov

FGBOU VO North-Western State Medical University named after I.I. Mechnikov

Email: mr.haisenberg001@gmail.com
ORCID iD: 0000-0001-6905-0581

resident at the Department of Urology

Russian Federation, Saint Petersburg

O. N. Allahverdiev

FGBOU VO North-Western State Medical University named after I.I. Mechnikov

Email: orkhan.all@mail.ru
ORCID iD: 0000-0001-5897-0729

resident at the Department of Urology

Russian Federation, Saint Petersburg

A. S. Fundament

City Mariinsky hospital

Email: aleksander.bane@yandex.ru
ORCID iD: 0009-0003-3925-2504

urologist at the Center of Urology with robot-assisted surgery

 

Russian Federation, Saint Petersburg

References

  1. Kaprin A.D., Apolikhin O.I., Sivkov A.V., Anokhin N.V., Gadzhiev N.K., etc. The incidence of urolithiasis in the Russian Federation from 2005 to 2020. Experimental and clinical urology. 2022;15(2):10–17. doi: 10.29188/2222-8543-2022-15-2-10-17. Russian (Каприн А.Д., Аполихин О.И., Сивков А.В., Анохин Н.В., Гаджиев Н.К. и др. Заболеваемость мочекаменной болезнью в Российской Федерации с 2005 по 2020 год. Экспериментальная и клиническая урология. 2022;15(2):10–17. doi: 10.29188/2222-8543-2022-15-2-10-17).
  2. Lang J., Narendrula A., El-Zawahry A., Sindhwani P., Ekwenna O. Global trends in incidence and burden of urolithiasis from 1990 to 2019: an analysis of global burden of disease study data. Eur Urol Open Sci. 2022;35:37–46. doi: 10.1016/j.euros.2021.10.008.
  3. Martov A.G., Dutov S.V., Andronov A.S. Ultraminipercutated nephrolithotripsy in the treatment of kidney stones. Urology. 2016;2:82–88. Russian (Мартов А.Г., Дутов С.В., Андронов А.С. Ультраминиперкутанная нефролитотрипсия в лечении камней почек. Урология. 2016;2:82–88).
  4. Stern K.L. Percutaneous management of upper tract stones: from mini to maxi percutaneous nephrolithotomy. Curr Opin Urol. 2023;33(4):339–344. doi: 10.1097/MOU.0000000000001987.
  5. Zhu W., Huang Z., Zeng G. Miniaturization in percutaneous nephrolithotomy: what is new? Asian J Urol. 2023;10(3):275–280. doi: 10.1016/j.ajur.2023.01.003.
  6. Doizi S., Traxer O. Flexible ureteroscopy: technique, tips and tricks. Urolithiasis. 2018;46(1):47–58. doi: 10.1007/s00240-017-1030-x.
  7. Popov S.V., Orlov I.N., Sytnik D.A., Radjabov R.M. Retrograde intrarenal surgery for kidney stones over two centimeters. Bulletin of Urology. 2022;10(3):98–105. doi: 10.21886/2308-6424-2022-3-98-105. Russian (Попов С.В., Орлов И.Н., Сытник Д.А., Раджабов Р.М. Ретроградная интраренальная хирургия при камнях почек более двух сантиметров. Вестник урологии. 2022;10(3):98–105. doi: 10.21886/2308-6424-2022-3-98-105).
  8. Guliyev B.G., Komyakov B.K., Agagyulov M.U., Yagubov H.H., Korol E.I., Talyshinsky A.E. Retrograde intrarenal surgery of kidney diseases. Urologiia. 2022;(5):84–89. doi: 10.18565/urology.2022.5.84-89. Russian (Гулиев Б.Г., Комяков Б.К., Агагюлов М.У., Ягубов Х.Х., Король Е.И., Талышинский А.Э. Ретроградная интраренальная хирургия заболеваний почек. Урология. 2022;(5):84–89. doi: 10.18565/urology.2022.5.84-89).
  9. Belkovsky M., Passerotti C.C., Maia R.S., de Almeida Arrtifon E.L., Otoch J.P., Da Cruz J.A. Comparing outcomes of single-use vs reusable ureteroscopes: a systematic review and meta-analysis. Urolithiasis. 2024;52(1):37. doi: 10.1007/s00240-024-01537-8.
  10. Protoshchak V.V., Orlov D.N., Paronnikov M.V., Karpushenko E.G. Prognosis of ureteral dilation during operations using the ureteral casing in patients with urolithiasis. Urologiia. 2024;1:17–23. doi: 10.18565/urology.2024.1.17-23. Russian (Протощак В.В., Орлов Д.Н., Паронников М.В., Карпушенко Е.Г. Прогноз дилатации мочеточника при операциях с использованием уретерального кожуха у больных уролитиазом. Урология. 2024;1:17–23. doi: 10.18565/urology.2024.1.17-23).
  11. Teishima J., Takayama Y., Iwaguro S., Hayashi T., Inoue S., Hieda K. et al. Usefulness of personalized three-dimensional printed model on the satisfaction of preoperative education for patients undergoing robot-assisted partial nephrectomy and their families. Int Urol Nephrol. 2018;50(6):1061–1066. doi: 10.1007/s11255-018-1881-2
  12. Bernhard J.C., Isotani S., Matsugasumi T., Duddalwar V., Hung A.J., Suer E. et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016;34(3):337–345. doi: 10.1007/s00345-015-1632-2
  13. Gadzhiev N.K., Briov V.P., Grigoriev V.E., Mazurenko D.A. and others. Creation of an authentic model of the cup-pelvic kidney system of patients for access training during percutaneous nephrolithotomy in complex forms of kidney stones. Experimental and clinical urology. 2017;2:52–56. Russian (Гаджиев Н.К., Бриов В.П., Григорьев В.Е., Мазуренко Д.А. и др. Создание аутентичной модели чашечно-лоханочной системы почки пациентов для тренировки доступа при перкутанной нефролитотомии при сложных формах камней почек. Экспериментальная и клиническая урология. 2017;2:52–56).
  14. Alyaev Yu.G., Sirota E.S., Bezrukov E.A., Ali S.H., Bukatov M.D., Letunovsky A.V., Byadretdinov I.Sh. Nonbiological 3D-printed simulator for the development of percutaneous nephrolithotripsy. Urologiia. 2018;1:10–14. doi: 10.18565/urology.2018.1.10-14. Russian (Аляев Ю.Г., Сирота Е.С., Безруков Е.А., Али С.Х., Букатов М.Д., Летуновский А.В., Бядретдинов И.Ш. Небиологический 3D-печатный тренажер для освоения чрескожной нефролитотрипсии. Урология. 2018;1:10–14. doi: 10.18565/urology.2018.1.10-14).
  15. Guliyev B.G., Talyshinsky A.E., Stetsik E.O., Agagyulov M.U. Nonbiological simulator with adjustable position of the kidney and bone landmarks for teaching puncture access in percutaneous nephrolithotripsy. Bulletin of Urology. 2022;1:5–14. doi: 10.21886/2308-6424-2022-1-5-14. Russian (Гулиев Б.Г., Талышинский А.Э., Стецик Е.О., Агагюлов М.У. Небиологический тренажер с регулируемым положением почки и костных ориентиров для обучения пункционному доступу при перкутанной нефролитотрипсии. Вестник урологии. 2022;1:5–14. doi: 10.21886/2308-6424-2022-1-5-14).
  16. Porpiglia F., Bertolo R., Checcucci E., Amparore D., Autorino R., Dasgupta P. et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol. 2018;36(2):201–207. doi: 10.1007/s00345-017-2126-1
  17. Chou D.S., Abdelshehid C., Clayman R.V., McDougall E.M. Comparison of results of virtual-reality simulator and training model for basic ureteroscopy training. J Endourol. 2006;20(4):266–271. doi: 10.1089/end.2006.20.266.
  18. Hu WG., Feng, JY., Wang, J. Song YJ, Xu XT, Zhou H, Huang CB. Ureteroscopy and cystoscopy training: comparison between transparent and non-transparent simulators. BMC Med Educ. 2015;15:93. doi: 10.1186/s12909-015-0380-8
  19. Villa L., Somani B.K., Sener T.E., Cloutier J., Buttice S. et al. Comprehensive flexible ureteroscopy (FURS) simulator for training in endourology: the K-box model. Cent European J Urol. 2016;69:118–120. doi: 10.5173/ceju.2016.710.
  20. Orecchia L., Manfrin D., Germani S., Del Fabbro D., Asimakopoulos A.D., Finazzi Agro E. et al. Introducing 3D printed models of the upper urinary tract for high-fidelity simulation of retrograde intrarenal surgery. 3D Print Med. 2021;7:15. doi: 10.1186/s41205-021-00105-9
  21. Kho Y., Yoon H.S., Park D-H., Do M-T., Jung G., Cho S.Y. Effectiveness of a newly-developed training module using 3D printing for the navigation during retrograde intrarenal surgery. Invest. Clin Urol. 2022;63(5):554–562. doi: 10.4111/icu.20220205
  22. Ogan K., Jacomides L., Shulman M.J., Roehrborn C.G., Cadeddu J.A., Pearle M.S. Virtual ureteroscopy predicts ureteroscopic proficiency of medical students on a cadaver. J Urol. 2004;172(2):667–671. doi: 10.1097/01.ju.0000131631.60022.d9.
  23. Wignall G.R., Denstedt J.D., Preminger G.M., Cadeddu J.A., Pearle M.S., Sweet R.M., McDougall E.M. Surgical simulation: a urological perspective. J Urol. 2008;179(5):1690–1609. doi: 10.1016/j.juro.2008.01.014.
  24. Choy I., Kitto S., Adu-Areyee N., Okrainec A. Barriers to the uptake of laparoscopic surgery in a lower-middle-income country. Surg. Endosc. 2013;27:4009–4015. doi: 10.1007/s00464-013-3019-z.
  25. Krishnan D., Keloth A.V., Ubedulla S. Pros and cons of simulation in medical education: a review. Int J Med Health Res. 2017;3:84–87.
  26. Mantica G., Carrion D.M., Pang K.H. et al. The definition of ideal training of a urology resident from two different perspectives: trainees vs professors. Is there agreement in their idea of good training? Cent European J Urol. 2023;76:162–166. doi: 10.5173/ceju.2023.019.
  27. Checcucci E., Puliati S., Pecoraro A., Piramide F., Campi R. et al. ESRU-ESU-YAU_UROTECH on urology residents surgical training: are we ready for simulation and a standardized program? Eur Urol. Open Science. 2024;6:18–28. doi: 10.1016/j.euros.2023.12.008.
  28. Al-Kadi A.S., Donnon T., Oddone Paolucci E., Mitchell P., Debru E., Church N. The effect of simulation in improving students’ performance in laparoscopic surgery: a meta-analysis. Surg Endosc. 2012;26(11):3215–3124. doi: 10.1007/s00464-012-2327-z.
  29. Brunckhorst O., Aydin A., Abboudi H., Sahai A., Khan M.S., Dasgupta P. et al. Simulation-based ureteroscopy training: a systematic review. J Surg Educ. 2015;72:135–143. doi: 10.1016/j.surg.2014.07.003.
  30. Talyshinsky A.E., Guliyev B.G., Mishvelov A.E., Agagyulov M.U., Andrianov A.A. Virtual reality simulator for the development of spatial orientation skills during retrograde intrarenal pyeloscopy. Bulletin of Urology. 2023;11(1):100–107. doi: 10.21886/2308-6424-2023-11-1-100-107. Russian (Талышинский А.Э., Гулиев Б.Г., Мишвелов А.Е., Агагюлов М.У., Андрианов А.А. Симулятор виртуальной реальности для развития навыков пространственного ориентирования во время ретроградной интраренальной пиелоскопии. Вестник урологии. 2023;11(1):100–107. doi: 10.21886/2308-6424-2023-11-1-100-107).
  31. Ritchie A., Pacilli M., Nataraja R.M. Simulation-based education in urology – an update. Ther Adv Urol. 2023;15:1 15. doi: 10.1177/1756287221189924.
  32. Wong V.K., Aminoltejari К., Almutairi К., Lange D., Chew B.H. Controversies associated with ureteral sheath placement during ureterscopy. Investig Clin Urol. 2020;61(5):455–463. doi: 10.4111/icu.20200278.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Special box of a non-biological simulator, printed on a 3D printer, with recesses for the MP, ureters and 3D models of the renal cavity system

Download (211KB)
3. Fig. 2. Non-biological simulator for RIRS with the main elements of the urinary tract located in it

Download (169KB)
4. Fig. 3. Additional 3D printed models of the renal cavity system

Download (102KB)
5. Fig. 4. Testing of a non-biological simulator for RIRS with a closed transparent cover A) The non-biological simulator is closed with a transparent cover during training. B) During intrarenal navigation, the trained physician looks only at the 3D model of the renal cavity system located inside the simulator

Download (279KB)
6. Fig. 5. Testing of a non-biological simulator for RIRS with a closed opaque cover A) The non-biological simulator is closed with an opaque cover during training. B) The urologist being trained looks directly at the endovideo stand monitor during navigation

Download (240KB)

Copyright (c) 2024 Bionika Media