Vitamin D and urinary tract infections in women

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The literature review is devoted to the study of the mechanisms of vitamin D involvement in the regulation of the immune response to infection, as well as the relationship between serum vitamin D levels and urinary tract infections (UTI) for women. Currently, the mechanisms of vitamin D’s involvement in the regulation of innate immunity have been reliably established , as well as the immune response of lymphoid tissue associated with the intestine , in response to the introduction of infection. Vitamin D is also involved in the modulation of the adaptive human immune system, which provides acquired anti-infective immunity, however, despite the fact that some mechanisms of this interaction have already been studied, the available data are still insufficient to draw unambiguous conclusions about the role of vitamin D in all infections. However, the obtained convincing evidence of a relationship between low serum vitamin D levels and a higher frequency of more pronounced UTIs in women allows us to consider vitamin D as a new independent predictor of UTIs. In addition, clinical studies that have compensated for vitamin D deficiency in women with UTIs demonstrate a pronounced preventive effect of such complementation in recurrent UTIs. Given the urgency of the problem of vitamin D deficiency and urinary tract infections, there is still a need to continue conducting high-level clinical trials in this area.

全文:

受限制的访问

作者简介

Oleg Bratchikov

Kursk State Medical University

编辑信件的主要联系方式.
Email: bratov45@mail.ru
ORCID iD: 0000-0002-0906-9851

Doctor of Medical Sciences, Professor, Academician of the Russian Academy of Natural Sciences, Honored Doctor of the Russian Federation, Head of the Department of Urology

 

俄罗斯联邦, 3, K. Marx Str., Kursk, 305041

Evgeny Koryagin

Kursk State Medical University

Email: e-koryagin@bk.ru

full–time postgraduate student at the Department of Urology

俄罗斯联邦, 3, K. Marx Str., Kursk, 305041

参考

  1. Bonkat G., Bartoletti R., Bruyere F. et al. Clinical recommendations on infections in urology. EAU; 2024. 94 р.
  2. Simmering J.E, Tang F., Cavanaugh J.E. et al. The increase in hospitalizations for urinary tract infections and the associated costs in the United States, 1998-2011. Open Forum Infect Dis. 2017;4(1):ofw281. doi: 10.1093/ofid/ofw281.
  3. Flores-Mireles A.L. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015;13(5):269–284. doi: 10.1038/nrmicro3432.
  4. Tyuzikov I.A., Konovalov D.V., Bratchikov O.I. Deficit vitamina D i infekcii nizhnikh mochevykh putej – est’ li patogeneticheskie svyazi? Ehffektivnaya farmakoterapiya. 2021;17(17):22–30. doi: 10.33978/2307-3586-2021-17-17-22-30) Russian (Тюзиков И.А., Коновалов Д.В., Братчиков О.И. Дефицит витамина D и инфекции нижних мочевых путей – есть ли патогенетические связи? Эффективная фармакотерапия. 2021;17(17):22–30. doi: 10.33978/2307-3586-2021-17-17-22-30).
  5. Mahshouri P., Alikhani M.Y., Momtaz H.E. et al. Analysis of phylogroups, biofilm formation, virulence factors, antibiotic resistance and molecular typing of uropathogenic Escherichia coli strains isolated from patients with recurrent and non-recurrent urinary tract infections. BMC Infect Dis. 2025;25(1):267. doi: 10.1186/s12879-025-10635-w.
  6. Wawrysiuk S., Naber K., Rechberger T., Miotla P. Prevention and treatment of uncomplicated lower urinary tract infections in the era of increasing antimicrobial resistance-non-antibiotic approaches: a systemic review. Arch Gynecol Obstet. 2019; 300(4):821–828. doi: 10.1007/s00404-019-05256-z.
  7. Demay M.B., Pittas A.G., Bikle D.D. et al. Vitamin D for the Prevention of Disease: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2024;109(8):1907–1947. doi: 10.1210/clinem/dgae290.
  8. Mercy D.J., Girigoswami A., Girigoswami K., Relationship between urinary tract infections and serum vitamin D level in adults and children- a literature review. Mol Biol Rep. 2024;51(1):955. doi: 10.1007/s11033-024-09888-6.
  9. Sassi F., Tamone C., D’Amelio P. Vitamin D: nutrient, hormone, and immunomodulator. Nutrients. 2018;10(11):1656. doi: 10.3390/nu10111656.
  10. Georgieva V., Kamolvit W., Herthelius M. et al. Association between vitamin D, antimicrobial peptides and urinary tract infection in infants and young children. Acta Paediatr. 2019;108(3):551–556. doi: 10.1111/apa.14499.
  11. Castañeda-Delgado J.E., Araujo Z., Gonzalez-Curiel I. et al. Vitamin D and l-isoleucine promote antimicrobial peptide hBD-2 production in peripheral blood mononuclear cells from elderly individuals. Int J Vitam Nutr. Res. 2016;86(1-2):56–61. doi: 10.1024/0300-9831/a000423.
  12. Gombart A.F., Borregaard N., Koeffler H.P. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–1077. doi: 10.1096/fj.04-3284com.
  13. Dai X., Sayama K., Tohyama M. et al. PPARγ mediates innate immunity by regulating the 1α,25-dihydroxyvitamin D3 induced hBD-3 and cathelicidin in human keratinocytes. J Dermatol Sci. 2010;60(3): 179–186. doi: 10.1016/j.jdermsci.2010.09.008.
  14. Zaharova I.N., Cucaeva A.N., Dolbnja S.V. et al. Infekcii mochevyh putej i vitamin D: perspektivy ispol’zovanija v profilaktike i lechenii. Medicinskij sovet. 2021;11:148–155. Doi: https://doi.org/10.21518/2079-701X-2021-11-148-155. Russian (Захарова И.Н., Цуцаева А.Н., Долбня С.В. и др. Инфекции мочевых путей и витамин D: перспективы использования в профилактике и лечении. Медицинский совет. 2021;11:148–155. Doi: https://doi.org/10.21518/2079-701X-2021-11-148-155).
  15. Zaharova I.N., Osmanov I.M., Klimov L.Ja. et al. Rol’ antimikrobnyh peptidov v zashhite ot infekcij mochevyh putej. Medicinskij sovet. 2019;2:143–150. Doi: https://doi.org/10.21518/2079-701X-2019-2-143-150. Russian (Захарова И.Н., Османов И.М., Климов Л.Я. и др. Роль антимикробных пептидов в защите от инфекций мочевых путей. Медицинский совет. 2019;2:143–150. Doi: https://doi.org/10.21518/2079-701X-2019-2-143-150).
  16. White J.H. Vitamin D as an inducer of cathelicidin antimicrobial peptide expression: Past, present and future. J Steroid Biochem Mol Biol. 2010;121(1-2):234–238. doi: 10.1016/j.jsbmb.2010.03.034.
  17. Kim E.W, Teles R.M.B, Haile S. Vitamin D status contributes to the antimicrobial activity of macrophages against Mycobacterium leprae. PLoS Negl Trop Dis. 2018;12(7):e0006608. doi: 10.1371/journal.pntd.0006608.
  18. Wei R., Christakos S. Mechanisms Underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients. 2015;7(10):8251–8260. doi: 10.3390/nu7105392.
  19. Mathias E., Tangpricha V., Sarnaik A. et al. Association of vitamin D with cathelicidin and vitamin D binding protein in pediatric sepsis. J Clin Transl Endocrinol. 2017;10:36–38. doi: 10.1016/j.jcte.2017.11.001.
  20. Greulich T., Regner W., Branscheidt M. et al. Altered blood levels of vitamin D, cathelicidin and parathyroid hormone in patients with sepsis-a pilot study. Anaesth Intensive Care. 2017;45(1):36–45. doi: 10.1177/0310057X1704500106.
  21. Quraishi S.A., De Pascale G., Needleman J.S. et al. Effect of cholecalciferol supplementation on vitamin D status and cathelicidin levels in sepsis: A randomized, placebo-controlled trial. Crit Care Med. 2015;43(9):1928–1937. doi: 10.1097/CCM.0000000000001148.
  22. Borella E., Nesher G., Israeli E., Shoenfeld Y. Vitamin D: a new anti-infective agent? Ann N Y Acad Sci. 2014;1317:76–83. doi: 10.1111/nyas.12321.
  23. Shin D.-M., Yuk J.-M., Lee H.-M. et al. Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signaling. Cell Microbiol. 2010;12(11): 1648–1665. doi: 10.1111/j.1462-5822.2010.01497.x.
  24. Yin Z., Pintea V., Lin Y. et al. Vitamin D enhances corneal epithelial barrier function. Invest Ophthalmol Vis Sci. 2011;52(10):7359–7364. doi: 10.1167/iovs.11-7605.
  25. D’Amelio P., Sassi F. Gut Microbiota, Immune System, and Bone. Calcif Tissue Int. 2018;102(4):415–425. doi: 10.1007/s00223-017-0331-y.
  26. Akimbekov N.S., Digel I., Sherelkhan D.K. et al. Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochem Cytochem. 2020;53(3):33–42. doi: 10.1267/ahc.20011.
  27. Caricilli A.M., Picardi P.K., de Abreu L.L. et al. Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol. 2011;9(12):e1001212. doi: 10.1371/journal.pbio.1001212.
  28. Flanagan P.K., Chiewchengchol D., Wright H.L. et al. Killing of escherichia coli by Crohn’s disease monocyte-derived macrophages and its enhancement by hydroxychloroquine and vitamin D. Inflamm Bowel Dis. 2015;21(7):1499–1510. doi: 10.1097/MIB.0000000000000387.
  29. Su D., Nie Y., Zhu A. et al. Vitamin D signaling through induction of paneth cell defensins maintains gut microbiota and improves metabolic disorders and hepatic steatosis in animal models. Front Physiol. 2016;7:498. doi: 10.3389/fphys.2016.00498.
  30. Wu S., Liao A.P., Xia Y. et al. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J Pathol. 2010;177:686–697. doi: 10.2353/ajpath.2010.090998.
  31. Du J., Chen Y., Shi Y. et al. 1,25-Dihydroxyvitamin D protects intestinal epithelial barrier by regulating the myosin light chain kinase signaling pathway. Inflamm Bowel Dis. 2015; 21(11): 2495–2506. doi: 10.1097/MIB.0000000000000526.
  32. He L., Liu T., Shi Y. et al. Gut epithelial vitamin D receptor regulates microbiota-dependent mucosal inflammation by suppressing intestinal epithelial cell apoptosis. Endocrinology. 2018; 159(2):967–979. doi: 10.1210/en.2017-00748.
  33. Lim, W.-C., Hanauer S.B., Li Y.C. Mechanisms of disease: Vitamin D and inflammatory bowel disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2(7):308–315. doi: 10.1038/ncpgasthep0215.
  34. Ananthakrishnan A.N., Cagan A., Gainer V.S. et al. Higher plasma vitamin D is associated with reduced risk of Clostridium difficile infection in patients with inflammatory bowel diseases. Aliment Pharmacol Ther. 2014; 39(10):1136–1142. doi: 10.1111/apt.12706.
  35. Chun R.F., Liu P.T., Modlin R.L. et al. Impact of vitamin D on immune function: Lessons learned from genome-wide analysis. Front Physiol. 2014;5:151. doi: 10.3389/fphys.2014.00151.
  36. Xie Z., Chen J., Zheng C. et al. 1,25-dihydroxyvitamin D3 -induced dendritic cells suppress experimental autoimmune encephalomyelitis by increasing proportions of the regulatory lymphocytes and reducing T helper type 1 and type 17 cells. Immunology. 2017;152(3):414–424. doi: 10.1111/imm.12776.
  37. Zhou S.-H., Wang X., Fan M.-Y. et al. Influence of vitamin D deficiency on T cell subsets and related indices during spinal tuberculosis. Exp Ther Med. 2018;16(2): 718–722. doi: 10.3892/etm.2018.6203.
  38. Stubbs J.R., Idiculla A., Slusser J. et al. Cholecalciferol supplementation alters calcitriol-responsive monocyte proteins and decreases inflammatory cytokines in ESRD. J Am Soc Nephrol. 2010;21(2):353–361. doi: 10.1681/ASN.2009040451.
  39. Drozdenko G., Heine G., Worm M. Oral vitamin D increases the frequencies of CD38+ human B cells and ameliorates IL-17-producing T cells. Exp Dermatol. 2014;23(2):107–112. doi: 10.1111/exd.12300.
  40. Balamurugan B.S., Marimuthu M.M.C., Sundaram V.A. et al. Micro nutrients as immunomodulators in the ageing population: a focus on inflammation and autoimmunity. Immun Ageing. 2024;21(1):88. doi: 10.1186/s12979-024-00492-7.
  41. Pichler J., Gerstmayr M., Szépfalusi Z. et al. 1 alpha,25(OH)2D3 inhibits not only Th1 but also Th2 differentiation in human cord blood T cells. Pediatr Res. 2002;52:12–18. doi: 10.1203/00006450-200207000-00005.
  42. Staeva-Vieira T.P., Freedman L.P. 1,25-dihydroxyvitamin D3 inhibits IFN-gamma and IL-4 levels during in vitro polarization of primary murine CD4+T cells. J Immunol. 2002;168(3):1181–1189. doi: 10.4049/jimmunol.168.3.1181.
  43. Fawaz L., Mrad M.F., Kazan J.M. et al. Comparative effect of 25(OH)D3 and 1,25(OH)2D3 on Th17 cell differentiation. Clin Immunol. 2016;166-167:59–71. doi: 10.1016/j.clim.2016.02.011.
  44. Şıklar Z., Karataş D., Doğu F. et al. Regulatory T cells and vitamin D status in children with chronic autoimmune thyroiditis. J Clin Res Pediatr Endocrinol. 2016;8(3):276–281. doi: 10.4274/jcrpe.2766.
  45. Joshi S., Pantalena L.-C., Liu X.K. et al. 1,25-dihydroxyvitamin D3 ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol Cell Biol. 2011;31(17): 3653–3669. doi: 10.1128/MCB.05020-11.
  46. Palmer M.T., Lee Y.K., Maynard C.L. et al. Lineage-specific effects of 1,25-dihydroxyvitamin D3 on the development of effector CD4 T cells. J Biol Chem. 2011;286(2): 997–1004. doi: 10.1074/jbc.M110.163790.
  47. Treiber G., Prietl B., Fröhlich-Reiterer E. et al. Cholecalciferol supplementation improves suppressive capacity of regulatory T-cells in young patients with new-onset type 1 diabetes mellitus–A randomized clinical trial. Clin Immunol. 2015;161(2):217–224. doi: 10.1016/j.clim.2015.08.002.
  48. Buondonno I., Rovera G., Sassi F. et al. Vitamin D and immunomodulation in early rheumatoid arthritis: A randomized double-blind placebo-controlled study. PLoS ONE. 2017;12(6):e0178463. doi: 10.1371/journal.pone.0178463.
  49. Hu J., Wan Y. Tolerogenic dendritic cells and their potential applications. Immunology. 2011;132(3):307–314. doi: 10.1111/j.1365-2567.2010.03396.x.
  50. Unger W.W.J., Laban S., Kleijwegt F.S. et al. Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: Differential role for PD-L1. Eur J Immunol. 2009;39(11):3147–3159. doi: 10.1002/eji.200839103.
  51. Martens P.-J., Gysemans C., Verstuyf A., Mathieu C. Vitamin d’s effect on immune function. Nutrients. 2020;12(5):1248. doi: 10.3390/nu12051248.
  52. Hertting O., Luthje P., Sullivan D. et al. Vitamin D-Deficient Mice Have More Invasive Urinary Tract Infection. PLoS One. 2017;12(7):e0180810. doi: 10.1371/journal.pone.0180810.
  53. Mohanty S, Kamolvit W, Hertting O, Brauner A. Vitamin D strengthens the bladder epithelial barrier by inducing tight junction proteins during E. coli urinary tract infection. Cell Tissue Res. 2020;380(3):669–73. doi: 10.1007/s00441-019-03162-z.
  54. Hertting O., Holm Å., Lüthje P., Brauner H. et al. Vitamin D induction of the human antimicrobial Peptide cathelicidin in the urinary bladder. PLoS ONE. 2010;5(12):e15580. doi: 10.1371/journal.pone.0015580.
  55. Zhang Y., Leung D.Y., Richers B.N. et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012;188:2127–2135. doi: 10.4049/jimmunol.1102412.
  56. Nseir W., Taha M., Nemarny H., Mograbi J. The association between serum levels of vitamin d and recurrent urinary tract infections in premenopausal women. Int J Infect Dis. 2013;17(12):e1121–e1124. doi: 10.1016/j.ijid.2013.06.007.
  57. Wang E., Tang P., Chen C. Urinary tract infections and risk of preterm birth: a systematic review and meta-analysis. Rev Inst Med Trop Sao Paulo. 2024;66:e54. doi: 10.1590/S1678-9946202466054.
  58. Ramos N., Sekikubo M., Kironde F. The impact of vitamin d on the innate immune response to uropathogenic escherichia coli during pregnancy. Clin Microbiol Infect. 2015;21(5):482.e1–482.e7. doi: 10.1016/j.cmi.2014.12.010.
  59. Haghdoost S., Pazandeh F., Darvish S. et al. Association of serum vitamin D levels and urinary tract infection in pregnant women: a case control study. Eur J Obstet Gynecol Reprod Biol. 2019;243:51–56. doi: 10.1016/j.ejogrb.2019.10.015.
  60. Arnljots R., Snaebjörnsson Arnljots E., Thorn J. Bacteriuria and vitamin D deficiency: a cross sectional study of 385 nursing home residents. BMC Geriatr. 2019;19(1):381. doi: 10.1186/s12877-019-1400-z.
  61. Ali S.B., Perdawood D., Abdulrahman R. Vitamin D deficiency as a risk factor for urinary tract infection in women at reproductive age. Saudi J Biol Sci. 2020;27(11):2942–2947. doi: 10.1016/j.sjbs.2020.08.008.
  62. Bratchikov O.I., Konovalov D.V., Smirnov A.V., Tyuzikov I.A. Vliyanie deficita vitamina D i ego korrekcii na pokazateli urogenital`nogo zdorov`ya i chastotu recidivov xronicheskogo cistita u zhenshhin reproduktivnogo vozrasta (pilotnoe issledovanie). Farmakologiya & Farmakoterapiya. 2021;2:46–52. doi: 10.46393/2713-2129_2021_2_46_52 Russian (Братчиков О.И., Коновалов Д.В., Смирнов А.В., Тюзиков И.А. Влияние дефицита витамина D и его коррекции на показатели урогенитального здоровья и частоту рецидивов хронического цистита у женщин репродуктивного возраста (пилотное исследование). Фармакология & Фармакотерапия. 2021;2:46–52. doi: 10.46393/2713-2129_2021_2_46_52).
  63. Muntean C., Săsăran M. Vitamin D Status and Its Role in First-Time and Recurrent Urinary Tract Infections in Children: A Case-Control Study. Children (Basel). 2021;8(5):419. doi: 10.3390/children8050419.
  64. Sürmeli Döven S., Erdoğan S. Vitamin d deficiency as a risk factor for renal scarring in recurrent urinary tract infections. Pediatr Int. 2021;63(3):295–299. doi: 10.1111/ped.14397.
  65. Basil M., Chmagh A.A., Hassan M.S. The predictive role of vitamin d deficiency in urinary tract infection at reproductive age in women. Open Access Macedonian J Med Sci. 2022;10(A):498–501. doi: 10.3889/oamjms.2022.8689.
  66. Liu L., Xie K.,Yin M. et al. Lower serum levels of vitamin D in adults with urinary tract infection Infection. 2022;50(3):739–746. doi: 10.1007/s15010-021-01750-2.
  67. Pirdel L., Pirdel M. A differential immune modulating role of vitamin d in urinary tract infection. Immunol Investig. 2022;51(3):531–545. doi: 10.1080/08820139.2020.1845723.
  68. Tulegenova D.E., Ibraeva L.K., Rybalkina D.Kh. et al. Justification of the need to normalize vitamin D status for immunoprophylaxis. Vopr. pitan. 2020;89(6):70–81. doi: 10.24411/0042-8833-2020-10080. Russian (Тулегенова Д.Е., Ибраева Л.К., Рыбалкина Д.Х. и др. К вопросу о необходимости оптимизации обеспеченности витамином D с целью иммунопрофилактики. Вопросы питания. 2020;89(6):70–81. doi: 10.24411/0042-8833-2020-10080).
  69. Deng Q.F., Chu H., Wen Z., Cao Y.S. Vitamin d and urinary tract infection: a systematic review and meta-analysis. Annals Clin Lab Sci. 2019.49(1):134–142.
  70. Gan Y., You S., Ying J., Mu D. The Association between Serum Vitamin D Levels and Urinary Tract Infection Risk in Children: A Systematic Review and Meta-Analysis. Nutrients. 2023;15(12):2690. doi: 10.3390/nu15122690.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Effect of vitamin D on innate immunity and intestinal microbiota (adapted from [9])

下载 (4MB)
3. Fig. 2. The effect of vitamin D on acquired (adaptive) immunity (adapted from [9])

下载 (6MB)

版权所有 © Bionika Media, 2025