Nephron epithelial changes of the obstructive kidney in unilateral ureteral obstruction (experimental study)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Introduction. The high prevalence of kidney diseases caused by urinary tract obstruction has led to the need for experimental studies of the dynamics of pathological processes in their lesions. Despite the fact that the general patterns of development of obstructive uropathy are known, the features of renal tissue damage, in particular structural and molecular biological changes in this pathology, remain insufficiently studied. Objective: to study the dynamics of changes in the phenotype of epithelial cells of the nephron of an obstructive kidney with unilateral ureteral obstruction using an experimental model. Materials and methods. The experimental study was carried out on the basis of the Rostov State Medical University. The model of unilateral ureteral obstruction was reproduced in adult rabbits. The studies were carried out on the 7th, 14th and 21st days of complete obstruction of the left ureter. Immunophenotyping of obstructive kidney tissue samples was performed for markers of epithelial phenotype (cytokeratin 7, E-cadherin) and mesenchymal phenotype (vimentin, a- smooth muscle actin). Results. The sequence of changes in the phenotype of nephron epithelial cells during ureteral obstruction has been established. The first signs of an epithelial-mesenchymal transition (EMT) appear by day 7 in the form of a decrease in visualization of markers of the epithelial phenotype. On the 14th day, the expression of both epithelial and mesenchymal markers is noted. Significant changes in the phenotype of nephron epithelial cells: loss of epithelial markers (cytokeratin 7, E-cadherin) and the acquisition of mesenchymal markers (vimentin, a- smooth muscle actin), are noted by the 21st day of the experiment. Conclusion. An experimental model of unilateral ureteral obstruction revealed the transformation of the nephron tubule cell phenotype from epithelial to mesenchymal.

Full Text

Restricted Access

About the authors

M. A Akimenko

Rostov State Medical University

Email: akimenkoma@yandex.ru
graduate student of the Department Rostov-on-Don, Russia

T. S Kolmakova

Rostov State Medical University

Email: tat_kolmakova@mail.ru
Dr. Biol. Sci., Associate Professor, Head of the Department Rostov-on-Don, Russia

O. V Voronova

Rostov State Medical University

Email: 9043401873@mail.ru
assistant of the Department of Operative Surgery, Clinical Anatomy and Pathological Anatomy Rostov-on-Don, Russia

M. I. Kogan

Rostov State Medical University

Email: dept_kogan@mail.ru
Dr. Med. Sci., professor, Head of the Department of Urology and Human Reproductive Health (with the course of Pediatric Urology and Andrology) Rostov-on-Don, Russia

References

  1. Chronic kidney disease surveillance system website. Centers for Disease Control and Prevention. Accessed March 9, 2017 http://www.cdc.gov/ckd
  2. Tomilina N.A. Mechanisms of nephrosclerosis and pharmacological inhibition of the intrarenal renin-angiotensin system as the basis of a nephroprotective strategy in chronic diseases of native kidneys and kidney transplant. Nephrology and dialysis. 2004;6(3):226-234.Russian. @@Томилина Н.А. Механизмы нефросклероза и фармакологическая ингибиция внутрипочечной ренин-ангиотензиновой системы как основа нефропротективной стратегии при хронических заболеваниях нативных почек и почечного трансплантата. Нефрология и диализ. 2004;6(3):226-234.
  3. Kramann R., Kusaba T., Humphreys B.D. Who regenerates the kidney tubule? Nephrol. Dial. Transplant. 2015; 30: 903-910. doi: 10.1093/ndt/gfu281.
  4. Burns W.C., Kantharidis P., Thomas M.C. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs. 2007;185:222-231. doi: 10.1159/000101323.
  5. Chiara L., Crean J. Emerging Transcriptional Mechanisms in the Regulation of Epithelial to Mesenchymal Transition and Cellular Plasticity in the Kidney. J Clin Med. 2016;12:51-64. doi: 10.3390/jcm5010006.
  6. Hertig A, Anglicheau D., Verine J., Pallet N., Touzot M., Ancel P., Mesnard L., Brousse N., Baugey E., Glotz D., Legendre C., Rondeau E., Xu-Dubois Y. Early epithelial phenotypic changes predict graft fibrosis. J Am. Soc. Nephrol. 2008;19:1584-1591. doi: 10.1681/ASN.2007101160.
  7. Lee K., Nelson C.M. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis.Int. Rev. Cell Mol. Biol. 2012; 294: 171- 221. doi: 10.1016/B978-0-12-394305-7.00004-5.
  8. Teng Y., Zeisberg M., Kalluri R. Transcriptional regulation of epithelial-mesenchymal transition. J Clin. Invest.2007;117:304-306. Doi: 10.1172/ JCI31200.
  9. Zeisberg M., Kalluri R. Cellular mechanisms of tissue fibrosis. 1.Common and organ-specivic mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol. 2013;304:216-225. doi: 10.1152/ajpcell.00328.2012.
  10. Srivastava S.P., Koya D., Kanasaki K. MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. Biomed Res Int. 2013;12:54-69. doi: 10.1155/2013/125469
  11. Barnes J.L., Glass W.F. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib Nephrol. 2011;169:73-93. doi: 10.1159/000313946.
  12. Grgic I., Duffield J.S., Humphreys B.D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol. 2012;27(2):183-193. Doi: 10.1007/ s00467-011-1772-6.
  13. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases J. Pathol. 2003;200:500-503.
  14. Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr. Rheumatol. Rep. 2009;11:120-126. doi: 10.1007/s00467-011-1772-6.
  15. Srivastava S.P., Hedayat A.F., Kanasaki K., Goodwin J. microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Front Pharmacol. 2019;10:1-14. doi: 10.3389/fphar.2019.00904.
  16. Zambon J.P., Magalhaes R.S., Ko I., Ross C.L., Orlando G, Peloso A, Atala A., Yoo J.J. Kidney regeneration: Where we are and future perspectives. World J. Nephrol. 2014;3:24-30. doi: 10.5527/wjn.v3.i3.24.
  17. Kramann R, Kusaba T, Humphreys B.D. Who regenerates the kidney tubule? Nephrol. Dial. Transplant. 2015;30:903-910.
  18. Sergio M., Galarreta C.I., Thornhill B.A., Forbes M.S., Chevalier R.L. The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction. J Urol. 2015;194:1463-1472. doi: 10.1016/j.juro.2015.04.078.
  19. Schmiedt C.W., Brainard B.M., Hinson W, Brown S.A., Brown C.A. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats. Vet Pathol. 2016;53:87-101. doi: 10.1177/0300985815600500.
  20. Giamarellos-Bourboulis E.J., Adamis T, Laoutaris G, Sabracos L., Koussoulas V., Mouktaroudi M, Perrea D., Karayannacos P.E., Giamarellou H. Immunomodulatory clarithromycin treatment of experimental sepsis and acute pyelonephritis caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2004;48:93-99. Doi: 10.1128/ aac.48.1.93-99.2004.
  21. Petrov S.V., Raikhlin N.T. Guidance on immunohistochemical diagnosis of human tumors. Kazan. 2004; 456 p.Russian. @@Петров С.В., Райхлин Н.Т. Руководство по иммуногистохимической диагностике опухолей человека. Казань. 2004;456.
  22. Galishon P, Gertig A., Trofimenko I.I. Epithelial-mesenchymal transformation as a biomarker of renal fibrosis: are we ready to apply theoretical knowledge in practice? Nephrology. 2013;17(4):9-16. doi: 10.24884/1561-6274-2013-17-4-9-16.Russian. @@Галишон П., Гертиг А., Трофименко И. И. Эпителиальномезенхимальная трансформация как биомаркер почечного фиброза: готовы ли мы применить теоретические знания на практике? Нефрология. 2013;17(4):9-16. doi: 10.24884/1561-6274-2013-17-4-9-16.
  23. Chiara L., Crean J. Emerging Transcriptional Mechanisms in the Regulation of Epithelial to Mesenchymal Transition and Cellular Plasticity in the Kidney. J Clin Med. 2016;12:51-64. doi: 10.3390/jcm5010006.
  24. Korzhevsky D.E.,Kirik O.V.Intermediate filament proteins nestin and vimentin in rat kidney cells. Morphology. 2008;58:50-55.Russian. @@Коржевский Д.Э., Кирик О.В. Белки промежуточных филаментов нестин и виментин в клетках почки крысы. Морфология. 2008;58:50-55.
  25. Chevalier R.L. The proximal tubule is the primary target of injury and progression of kidney disease: role of the glomerulotubular junction. Am J Physiol Renal Physiol. 2016;311:145-161. doi: 10.1152/ajprenal.00164.2016.
  26. Chevalier R.L. Evolution, Kidney Development, and Chronic Kidney Disease. Semin Cell Dev Biol. 2019;91:119-131. doi: 10.1016/j.semcdb.2018.05.024.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Bionika Media

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies