Use of flexible needles and ways to control their placement in robot-assisted prostate brachytherapy


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article provides an overview of developments in the field of flexible needles and methods of control over their behavior in the human body as a part of modern robotic systems for prostate cancer brachytherapy. The authors describe the advantages of flexible needles over standard ones, features of their design, and results of their tests in phantom models.

Full Text

Restricted Access

About the authors

A. V Lopota

Central Research and Development Institute of Robotics and Technical Cybernetics

N. A Gryaznov

Central Research and Development Institute of Robotics and Technical Cybernetics

K. Yu Senchik

Central Research and Development Institute of Robotics and Technical Cybernetics

V. V Kharlamov

Central Research and Development Institute of Robotics and Technical Cybernetics

S. A Nikitin

Central Research and Development Institute of Robotics and Technical Cybernetics

G. S Kireeva

Central Research and Development Institute of Robotics and Technical Cybernetics

Email: galinakireyeva@mail.ru

References

  1. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2013 году (заболеваемость и смертность). М.: ФГУ «МНИОИ им. П.А. Герцена» - филиал ФГБУ «ФМИЦ им. П.А. Герцена» Минздрава России. 2015.
  2. Koukourakis G., Kelekis N., Armonis V. Brachytherapy for Prostate Cancer: A Systematic Review. Adv Urol. 2009;327945. [Electronic source]. URL: http://www.hindawi.com/joumals/au/2009/327945/
  3. Skowronek J. Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer - between options. J Contemp Brachytherapy. 2013;5(1):33-41.
  4. Abolhassani N., Patel R.V., Moallem M. Needle insertion into soft tissue: a survey. Med Eng Phys. 2007 ;29(4) :413-431.
  5. McNeal J.E., Redwine E.A., Freiha F.S., Stamey T.A. Zonal distribution of prostatic adenocarcinoma: Correlation with histologic pattern and direction of spread. Am J Surg Pathol. 1988;12(12):897-906.
  6. Cohen R.J., Shannon B.A., Phillips M., Moorin R.E., Wheeler T.M., Garrett K.L. Central zone carcinoma of the prostate gland: A distinct tumor type with poor prognostic features. J Urol. 2008;179(5):1762-1767.
  7. Nag S., Bice W., DeWyngaert K., Prestidge B., Stock R., Yu Y. The American Brachytherapy Society recommendations for permanent prostate brachytherapy postimplant dosimetric analysis. Int J Radiat Oncol Biol Phys. 2000;46(1):221-230.
  8. Kehwar T.S., Jones H.A., Huq M.S., Smith R.P. Influence of prostatic edema on 131Cs permanent prostate seed implants: a dosimetric and radiobiological study. Int J Radiat Oncol Biol Phys. 2011;80(2):621-627.
  9. Nath R., Bice W.S., Butler W.M., Chen Z., Meigooni A.S., Narayana V., Rivard M.J., Yu Y. AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: Report of Task Group 137. Med Phys. 2009 ;36(11):5310-5322.
  10. Eapen L., Kayser C., Deshaies Y., Perry G, E, C, Morash C., Cygler J.E., Wilkins D., Dahrouge S. Correlating the degree of needle trauma during prostate brachytherapy and the development of acute urinary toxicity. Int J Radiat Oncol Biol Phys. 2004;59(5):1392-1394.
  11. Shah J.N., Ennis R.D. Rectal toxicity profile after transperineal interstitial permanent prostate brachytherapy: Use of a comprehensive toxicity scoring system and identification of rectal dosimetric toxicity predictors. Int J Radiat Oncol Biol Phys. 2006;64(3):817-824.
  12. Podder T.K., Dicker A.P., Hutapea P., Darvish K., Yu Y. A Novel Curvilinear Approach for Prostate Seed Implant. Med Phys. 2012;39(4):1887-1892.
  13. Ruiz B., Hutapea P., Darvish K., Dicker A., Yu Y., Podder T. SMA actuated flexible needle control using EM sensor feedback for prostate brachytherapy. In IEEE International Conference on Robotic and Automation (ICRA) 2012 Needle Steering Workshop, St. Paul, Minnesota, May. 18, 2012. [Electronic source]. URL: http://www.cs.cmu.edu/~surgmech/NeedleWorkshop/ posters/ruiz.html.
  14. Wood N.A., Shahrour K., Ost M.C., Riviere C.N. Needle steering system using duty-cycled rotation for percutaneous kidney access. International conference of the IEEE EMBS. Buenos Aires. 2010:267-272.
  15. Orlando F.M.J., Madhukar K., Franz K. et al. Control of Shape Memory Alloy Actuated Flexible Needle Using Multimodal Sensory Feedbacks. Journal of Automation and Control Engineering 2015; 3: 428-434.
  16. Ko S. Y., Luca F., Baena F. Closed-loop planar motion control of a steerable probe with a programmable bevel inspired by nature. IEEE Trans. on Robotics. 2011;27(5):970-983.
  17. Swaney P.J., Burgner J., Gilbert H.B. A flexure-based steerable needle: high curvature with reduced tissue damage. IEEE Trans Biomed Eng. 2013;60. [Electronic source]. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3867207/
  18. Podder T.K., Hutapea P., Darvish K., Dicker A., Yu Y. Smart Needling System for Fully Conformal Radiation Dose Delivery in Treating Prostate Cancer. ASME Conf. on Smart Materials, Adaptive Structures and Intelligent Systems. 2010: 893-896.
  19. Abolhassani N., Patel R., Ayazi F. Needle control along desired tracks in robotic prostate brachytherapy. IEEE Intern. Conf. Systems, Man and Cybernetics. 2007:1361-1366.
  20. Maghsoudi A., Jahed M. Model-based needle control in prostate percutaneous procedures. Proc Inst Mech Eng H. 2013;227(1):58-71.
  21. Kallem V., Cowan N.J. Image guidance offlexible tip- steerable needles. IEEE Trans. on Robotics. 2009;25(1):191-196.
  22. Engh J.A., Podnar G., Khoo S. Y., Riviere C.N. Flexible needle steering system for percutaneous access to deep zones of the brain. Proceedings of the IEEE annual north east bioengineering conference (NEBEC). Easton. 2006:103-104.
  23. Minhas D.S., Engh J.A., Fenske M.M., Riviere C.N. Modeling of needle steering via duty-cycled spinning. Proceedings of the IEEE international conference on engineering in medicine and biology society (EMBC). Lyon. 2007:2756-2759.
  24. Glozman D., Shoham M. Flexible needle steering and optimal trajectory planning for percutaneous therapies. Proceedings of the international conference on Medical Image Computing and Computer-Assisted Intervention. New York. 2004:137-144.
  25. Dehghan E., Salcudean S.E. Needle insertion parameter optimization for brachytherapy. IEEE T Robot. 2009;25:303-315.
  26. Abayazid M., Vrooijink G.J., Patil S., Alterovitz R., Misra S. Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue. Int J CARS. 2014;9:931-939.

Supplementary files

Supplementary Files
Action
1. JATS XML

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies