Reflux nephropathy in children: pathogenesis and prognosis. Part 2


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The second part of this review is devoted to the issues of modern and promising diagnosis of RN in children. The advantages and limits of the available methods for recording the structural and functional state of the kidneys in childhood are considered. Particular attention is paid to possibilities non-invasive methods for diagnosis and prediction of the disease course. Data on promising biomarkers of the early stages of RN formation and progression are presented. For the purpose of a comprehensive and adequate assessment of morphological changes in the kidneys, the necessity of studying various combinations of cytokines in biological media with the subsequent determination of the optimal spectrum is shown. The sensitivity and specificity of molecular indicators of renal damage reviewed as potential targets for renoprotective therapy in the nearest future.

Texto integral

Acesso é fechado

Sobre autores

O. Morozova

Sechenov First Moscow State Medical University(Sechenov University)

Email: morozova_ol@list.ru
Doctor of Medical Sciences, professor, Department of Pathophysiology Moscow, Russia

D. Lakomova

Saratov State Medical University n. a. V.I. Razumovsky

Email: dlmedic@mail.ru
Ph.D., associate professor at the Department of Pediatric Surgery Saratov, Russia

N. Zakharova

Sechenov First Moscow State Medical University(Sechenov University)

Email: lipidgormon@mail.ru
Doctor of Medical Sciences, professor, Department of clinical and laboratory diagnostics Moscow, Russia

L. Maltseva

Sechenov First Moscow State Medical University(Sechenov University)

Email: lamapost@mail.ru
Ph.D., associate professor at the Department of Pathophysiology Moscow, Russia

Z. Manasova

Sechenov First Moscow State Medical University(Sechenov University)

Email: butri78@mail.ru
Ph.D., associate professor at the Department of Pathophysiology Moscow, Russia

D. Morozov

Sechenov First Moscow State Medical University(Sechenov University)

Email: damorozov@list.ru
MD, professor at the Department of Pediatric Surgery, Urology and Andrology Moscow, Russia

Bibliografia

  1. Хворостов И.Н., Смирнов И.Е., Кучеренко А.Г., Герасимова Н.П., Комарова О.В., Зоркин С.Н. Нефросцинтиграфия и цитокины в диагностике поражений почек при пузырно-мочеточниковом рефлюксе у детей. Российский педиатрический журнал. 2013;2:20-26.
  2. Stylianos Roupakias, Xenophon Sinopidis, George Tsikopoulos, Ioannis Spyridakis, Ageliki Karatza, Anastasia Varvarigou. Dimercaptosuccinic Acid Scan Challenges in Childhood Urinary Tract Infection, Vesicoureteral Reflux and Renal Scarring Investigation and Management. PMID: 27355216. Minerva Urol Nefrol. 2017;69(2):144-152. Doi: 10.23736/ S0393-2249.16.02509-1.
  3. Shaikh N., Spingarn R.B., Hum S.W. Dimercaptosuccinic acid scan or ultrasound in screening for vesicoureteral reflux among children with urinary tract infections. Cochrane Database Syst Rev. 2016;7:CD010657. doi: 10.1002/14651858.CD010657.
  4. Эрман М.В. Рефлюкс-нефропатия у детей. Медицина ХХІ век 2006; 4 (5); 28-33.
  5. Tetsuya Kitao, Takahisa Kimata, Sohsaku Yamanouchi, Shogo Kato, Shoji Tsuji, Kazunari Kaneko. Urinary Biomarkers for Screening for Renal Scarring in Children With Febrile Urinary Tract Infection: Pilot Study. J Urol. 2015;194(3):766-771. doi: 10.1016/j.juro.2015.04.091.
  6. Nader Shaikh, Mary Ann Haralam, Marcia Kurs-Lasky, Alejandro Hoberman. Association of Renal Scarring With Number of Febrile Urinary Tract Infections in Children. JAMA Pediatr. 2019;173(10):949-952. doi: 10.1001/jamapediatrics.2019.2504.
  7. John M. Rosen, Ryan E. Yaggie, Patrick J.Woida, Richard J. Miller, Anthony J Schaeffer, David J Klumpp. TRPV1 and the MCP-1/CCR2 Axis Modulate Post-UTI Chronic Pain. Sci Rep. 2018;8(1):7188. Doi: 10.1038/ s41598-018-24056-0.
  8. Hermann Haller, Anna Bertram, Felix Nadrowitz, Jan Menne. Monocyte Chemoattractant protein-1 and the Kidney. Curr Opin Nephrol Hypertens. 2016;25(1):42-49. doi: 10.1097/MNH.0000000000000186.
  9. Margien G.S. Boels, Angela Koudijs, M. Cristina Avramut, Wendy M.P.J. Sol, Gangqi Wang, Annemarie M. van Oeveren-Rietdijk, Anton Jan van Zonneveld, Hetty C de Boer, Johan van der Vlag, Cees van Kooten, Dirk Eulberg, Bernard M. van den Berg, Daphne H.T. Ipelaar, Ton J. Rabelink. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy. Am J Pathol. 2017;187(11):2430-2440. doi: 10.1016/j.ajpath.2017.07.020.
  10. Nazli Dilay Gültekin, Meryem Benzer, §ebnem Tekin-Neijmann. Is There Any Relation Between Connective Tissue Growth Factor and Scar Tissue in Vesicoureteral Reflux? Turk J Pediatr. 2019;61(1):71-78. Doi: 10.24953/ turkjped.2019.01.011.
  11. Tokarchuk N., Vyzhga Y, Tokarchuk V., Garibeh E. Fibrotic markers in infants with pyelonephritis. Georgian Med News. 2019; (288):44-48. PMID: 31101774.
  12. Xianghua Liu, Ning Sun, Nan Mo, Shan Lu, Eli Song, Chuanchuan Ren, Zhenzhen Li. Quercetin Inhibits Kidney Fibrosis and the Epithelial to Mesenchymal Transition of the Renal Tubular System Involving Suppression of the Sonic Hedgehog Signaling Pathway. 2019;10(6):3782-3797. doi: 10.1039/c9fo00373h.
  13. Liang Wu, Xiao-Qian Li, Tanvi Goyal, Sean Eddy, Matthias Kretzler, Wen-Jun Ju, Min Chen, Ming-Hui Zhao. Urinary Epidermal Growth Factor Predicts Renal Prognosis in Antineutrophil Cytoplasmic Antibody-Associated Vasculitis. Ann Rheum Dis. 2018;77(9):1339-1344. doi: 10.1136/annrheumdis-2017-212578.
  14. Valentina Pastore, Fabio Bartoli. Urinary Excretion of EGF and MCP-1 in Children With Vesicoureteral Reflux. Int Braz J Urol 2017;43(3):549-555. doi: 10.1590/S1677-5538.IBJU.2015.0132.
  15. Gültekin N.D. Benzer M., Tekin-Neijmann §. Is there any relation between connective tissue growth factor and scar tissue in vesicoureteral reflux? Turk J Pediatr. 2019;61(1):71-78. doi: 10.24953/turkjped.2019.01.011.
  16. Wenjun Shang, Zhigang Wang. The Update of NGAL in Acute Kidney Injury. Curr Protein Pept Sci. 2017;18(12):1211-1217. doi: 10.2174/1389 203717666160909125004.
  17. Byung Kwan Kim, Hyung Eun Yim, Kee Hwan Yoo. Plasma Neutrophil Gelatinase-Associated Lipocalin: A Marker of Acute Pyelonephritis in Children. Pediatr Nephrol. 2017;32(3):477-484. doi: 10.1007/s00467-016-3518-y.
  18. Catherine S.Forster, Prasad Devarajan. Neutrophil Gelatinase-Associated Lipocalin: Utility in Urologic Conditions Editorial Pediatr Nephrol. 2017;32(3):377-381. doi: 10.1007/s00467-016-3540-0.
  19. Iswarya Jagadesan, Indira Agarwal, Swasti Chaturvedi, Arun Jose , Rani D Sahni, Jude J Fleming. Urinary Neutrophil Gelatinase Associated Lipocalin -A Sensitive Marker for Urinary Tract Infection in Children. Indian J Nephrol. 2019;29(5):340-344. doi: 10.4103/ijn.IJN_276_18. УРОЛОГИЯ, 2021, №4 / UROLOGIIA, 2021, №4
  20. Jagadesan I., Agarwal I., Chaturvedi S., Jose A., Sahni R.D., Fleming J.J. Urinary Neutrophil Gelatinase Associated Lipocalin - A Sensitive Marker for Urinary Tract Infection in Children. Indian J Nephrol. 2019;29(5):340- 344. doi: 10.4103/ijn.IJN_276_18.
  21. Jee Hyun Lee, Hyung Eun Yim, Kee Hwan Yoo. Associations of Plasma Neutrophil Gelatinase-associated Lipocalin, Anemia, and Renal Scarring in Children With Febrile Urinary Tract Infections. J Korean Med Sci. 2020;35(10):e65. doi: 10.3346/jkms.2020.35.e65.
  22. Gönül Parmaksiz, Aytül Noyan, Hasan Dursun, Emine ince, Rüksan Anarat, Nurcan Cengiz. Role of New Biomarkers for Predicting Renal Scarring in Vesicoureteral Reflux: NGAL, KIM-1, and L-FABP. Pediatr Nephrol. 2016;31(1):97-103. doi: 10.1007/s00467-015-3194-3.
  23. Sohsaku Yamanouchi, Takahisa Kimata, Jiro Kino, Tetsuya Kitao, Chikushi Suruda, Shoji Tsuji, Hiroyuki Kurosawa, Yoshiaki Hirayama, Akihiko Saito, Kazunari Kaneko. Urinary C-megalin for Screening of Renal Scarring in Children After Febrile Urinary Tract Infection. Pediatr Res. 2018;83(3):662-668. doi: 10.1038/pr.2017.276.
  24. Norikazu Toi, Masaaki Inaba, Eiji Ishimura, Naoko Tsugawa, Yasuo Imanishi, Masanori Emoto, Yoshiaki Hirayama, Shinya Nakatani, Akihiko Saito, Shinsuke Yamada. Significance of Urinary C-megalin Excretion in Vitamin D Metabolism in Pre-Dialysis CKD Patients. Sci Rep. 2019;9(1):2207. doi: 10.1038/s41598-019-38613-8.
  25. Bjoern Buchholz, Gunnar Schley, Kai-Uwe Eckardt. The Impact of Hypoxia on Nephrogenesis. Curr Opin Nephrol Hypertens. 2016;25(3):180-186. doi: 10.1097/MNH.0000000000000211.
  26. Diana Zepeda. EGF Regulation of Proximal Tubule Cell Proliferation and VEGF-A Secretion. Physiol Rep. 2017 Sep;5(18):e13453. Doi: 10.14814/ phy2.13453.
  27. Zhang Y., Nakano D., Guan Y., Hitomi H., Uemura A., Masaki T., Kobara H., Sugaya T., Nishiyama A. A sodium-glucose cotransporter 2 inhibitor attenuates renal capillary injury and fibrosis by a vascular endothelial growth factor-dependent pathway after renal injury in mice. Kidney Int. 2018;94(3):524-535. doi: 10.1016/j.kint.2018.05.002.
  28. Kyoung Hye Kong, Hyung Jung Oh, Beom Jin Lim, Minsuk Kim, Ki-Hwan Han, Youn-Hee Choi, Kihwan Kwon, Bo Young Nam, Kyoung Sook Park, Jung Tak Park, Seung Hyeok Han, Tae-Hyun Yoo, Shina Lee, Seung-Jung Kim, Duk-Hee Kang, Kyu Bok Choi, Vera Eremina, Susan E Quaggin, Dong-Ryeol Ryu, Shin-Wook Kang. Selective Tubular Activation of Hypoxia-Inducible factor-2a Has Dual Effects on Renal Fibrosis. Sci Rep. 2017;7(1):11351. doi: 10.1038/s41598-017-11829-2.
  29. Coban M., Inci A.The association of serum angiogenic growth factors with renal structure and function in patients with adult autosomal dominant polycystic kidney disease. Int Urol Nephrol. 2018;50(7):1293-1300. doi: 10.1007/s11255-018-1866-1.
  30. Mao H., Jiang C., Xu L., Chen D., Liu H., Xu Y., Ma K., Wang M. Ginsenoside protects against AKI via activation of HIF 1a and VEGF A in the kidney brain axis. Int J Mol Med. 2020;45(3):939-946. Doi: 10.3892/ ijmm.2020.4466.
  31. Zarjou A., Black L.M., Bolisetty S., Traylor A.M., Bowhay S.A., Zhang M.Z., Harris R.C., Agarwal A. Dynamic signature of lymphangiogenesis during acute kidney injury and chronic kidney disease. Lab Invest. 2019;99(9):1376-1388. doi: 10.1038/s41374-019-0259-0.
  32. Olga Morozova, Dmitry Morozov, Dmitri Pervouchine, Yulia Einav, Darya Lakomova, Natalya Zakharova, Lubov Severgina, Larisa Maltseva, Ivan Budnik. Urinary Biomarkers of Latent Inflammation and Fibrosis in Children With Vesicoureteral Reflux. Int Urol Nephrol. 2020;52(4):603- 610. doi: 10.1007/s11255-019-02357-1. Epub 2019 Dec 12.
  33. Balakrishna Bandari, Seema Pavaman Sindgikar, Soma Santosh Kumar, Mangalapady Shenoy Vijaya, and Raghu Shankar. Renal scarring following urinary tract infections in children. Sudan J Paediatr. 2019; 19(1): 25-30. doi: 10.24911/SJP.106-1554791193.
  34. Lin Chen, Tian Yang, De-Wen Lu, Hui Zhao, Ya-Long Feng, Hua Chen, Dan-Qian Chen, Nosratola D Vaziri, Ying-Yong Zhao. Central Role of Dysregulation of TGF-ß/Smad in CKD Progression and Potential Targets of Its Treatment. Biomed Pharmacother. 2018;101:670-681. doi: 10.1016/j.biopha.2018.02.090.
  35. Stephen P. Higgins, Yi Tang, Craig E. Higgins, Badar Mian, Wenzheng Zhang, Ralf-Peter Czekay, Rohan Samarakoon, David J Conti, Paul J Higgins. TGF-ß1/p53 Signaling in Renal Fibrogenesis Cell Signal. 2018;43:1-10. doi: 10.1016/j.cellsig.2017.11.005.
  36. John T. Liles, Britton K. Corkey, Gregory T. Notte, Grant R. Budas, Eric B. Lansdon, Ford Hinojosa-Kirschenbaum, Shawn S. Badal, Michael Lee, Brian E. Schultz, Sarah Wise, Swetha Pendem, Michael Graupe, Laurie Castonguay, Keith A Koch, Melanie H. Wong, Giuseppe A. Papalia, Dorothy M/ French, Theodore Sullivan, Erik G. Huntzicker, Frank Y. Ma, David J. Nikolic-Paterson, Tareq Altuhaifi, Haichun Yang, Agnes B Fogo, David G Breckenridge. ASK1 Contributes to Fibrosis and Dysfunction in Models of Kidney Disease. J Clin Invest. 2018;128(10):4485-4500. Doi: 10.1172/ JCI99768.
  37. Naoki Ohta, Hiroki Yasudo, Makoto Mizutani, Takeshi Matsushige, Reiji Fukano, Setsuaki Kittaka, Kenji Maehara, Kiyoshi Ichihara, Shouichi Ohga, Shunji Hasegawa. Serum Soluble ST2 as a Marker of Renal Scar in Pediatric Upper Urinary Tract Infection. Cytokine. 2019;120:258-263. doi: 10.1016/j.cyto.2019.05.006.
  38. Sufia Husain, Ibrahim Ginawi, Abdelhafiz Ibrahim Bashir, Hala Kfoury, Tariq Eid Al Johani, Hanan Hagar, Lama Raddaoui, Mohammed Al Ghonaim, Abdulkareem Alsuwaida. Focal and Segmental Glomerulosclerosis in Murine Models: A Histological and Ultrastructural Characterization With Immunohistochemistry Correlation of Glomerular CD44 and WT1 Expression. Ultrastruct Pathol. 2018;42(5):430-439. doi: 10.1080/019131 23.2018.1501125.
  39. Sonja Djudjaj, Ina V Martin, Eva M Buhl, Nina J Nothofer, Lin Leng, Marta Piecychna, Jürgen Floege, Jürgen Bernhagen, Richard Bucala, Peter Boor. Macrophage Migration Inhibitory Factor Limits Renal Inflammation and Fibrosis by Counteracting Tubular Cell Cycle Arrest. J Am Soc Nephrol. 2017;28(12):3590-3604. doi: 10.1681/ASN.2017020190.
  40. Tülay Becerir, Selcuk Yüksel, Havva Evrengül, Ahmet Ergin, Yasar Enli. Urinary Excretion of pentraxin-3 Correlates With the Presence of Renal Scar Following Acute Pyelonephritis in Children. Int Urol Nephrol. 2019;51(4):571-577. doi: 10.1007/s11255-019-02102-8.
  41. Helene Franqois, Christos Chatziantoniou. Renal Fibrosis: Recent Translational Aspects. Matrix Biol. 2018;68-69:318-332. Doi: 10.1016/j. matbio.2017.12.013.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Bionika Media, 2021

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies