Эффективность фторхинолонов при действии на биопленки возбудителей уроинфекций


Цитировать

Полный текст

Аннотация

Our investigations demonstrated that fluoroquinalones affect both formation and established urological bacterial biofilms which present difficulties for antimicrobial therapy because incomplete eradication of uroinfection promotes persistence and development of chronic processes. Fluoroquinalones reduce biofilm mass and number of CFU. The affected biofilms become less resistant to external impacts. This provides a more potent action of antibiotic and, finally, a good therapeutic effect of the drug. Levofloxacin (floracid®) showed the highest activity among fluoroquinalones studied. It actively suppresses uroinfection bacteria in biofilms and lowers the risk of the infection recurrence.

Об авторах

В В Тец

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

зав. каф. микробиологии; Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Н К Артеменко

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Н В Заславская

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Г В Тец

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

Санкт-Петербургский государственный медицинский университет им. акад. И. П. Павлова

V V Tets

N K Artemenko

N V Zaslavskaya

G V Tets

Список литературы

  1. Тец В. В. Бактериальные сообщества. В кн.: Тец В. (ред.). Клеточные сообщества. СПб.: Изд-во СПбГМУ; 1998. 15- 73.
  2. Costerton J. W., Stewart P. S., Greenberg E. P. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284: 1318-1322.
  3. Costerton W., Veeh R., Shirtliff M. et al. The applications of biofilm science to the study and control of chronic bacterial infections. J. Clin. Invest. 2003; 112: 1466-1477.
  4. 4. O'Toole G. A., Kaplan H. B., Kolter R. Biofilm formation as microbial development. Ann. Rev. Microbiol. 2000; 54: 49-79.
  5. Tetz V. V. The effect of antimicrobial agents and mutagen on bacterial cells in colonies. Med. Microbiol. Lett. 1996; 5: 426- 436.
  6. Tetz V. V., Rybalchenko O. V. Ultrastructure of colony-like communities of bacteria. Acta Pathol. Microbiol. Immunol. Scand. 1997; 105: 99-107.
  7. Tetz V. V., Rybalchenko O. V., Savkova G. A. Ultrastructure of surface film of bacterial colonies. J. Gen. Microbiol. 1993; 137: 1081-1088.
  8. Tetz V. V., Korobov V. P., Artemenko N. K. et al. Extracellular phospholipids of isolated bacterial communities. Biofilms 2004; 1: 149-155.
  9. Sponza D. T. Investigation of extracellular polymer substances (EPS) and physicochemical properties of different activated sludge flocs under steady-state conditions. Enzyme Microb. Technol. 2003; 32: 375-385.
  10. Sutherlad I. W. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 2001; 147: 3-9.
  11. Donlan R. M., Costerton J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002; 15: 167-193.
  12. Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov. 2003; 2: 114-122.
  13. Campanac C., Pineau L., Payard A. et al. Interactions between biocide cationic agents and bacterial biofilms. Antimicrob. Agents Chemother. 2002; 46: 1469-1474.
  14. Chambless J. D., Hunt S. M., Philip S. S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl. Environm. Microbiol. 2006; 72: 2005-2013.
  15. Harrison J. J., Ceri H., Roper N. J. et al. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 2005; 151: 3181-3195.
  16. Shah K. D., Spoering A. N., Lewis K. K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 2004; 186: 8172-8180.
  17. Anderl J. N., Franklin M. J., Stewart P. S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 2000; 44: 1818-1824.
  18. Sandoe J. A. T., Wysome J., West A. P. et al. Measurement of ampicillin, vancomycin, linezolid and gentamicin activity against enterococcal biofilms. J. Antimicrob. Chemother. 2006; 57: 767-770.
  19. Yang Y., Sreenivasan P. K., Subramanyam R., Cummins D. Multiparameter assessments to determine the effects of sugars and antimicrobials on a polymicrobial oral biofilm. Appl. Environm. Microbiol. 2006; 72: 6734-6742.
  20. Hancock V., Ferrieres L., Klemm P. Biofilm formation by asymptomatic and virulent urinary tract infectious Escherichia coli strains. FEMS Immunol. Med. Microbiol. 2007; 51: 212-219.
  21. Tenke P., Kovacs B ., Jackel M., Nagy E. The role of biofilm infection in urology. Wld J. Urol. 2006; 24: 13-20.
  22. Trautner B. W., Darouiche R. O. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control. 2004; 32: 177-183.
  23. Тец Г. В., Артеменко К. Л. Совместное действие антибиотиков и дезоксирибонуклеазы на бактерии. Антибиотики и химиотер. 2006; 51 (6): 3-6.
  24. Fu K. P., Lafredo S. C., Foleno B. et al. In vitro and in vivo antibacterial activities of levofloxacin, an optically active ofloxacin. Antimicrob. Agents Chemother. 1992; 36 (8): 860- 866.
  25. Мазо Е. Б., Попов С. В., Карабак В. И. Антимикробная терапия хронического бактериального простатита. Рус. мед. журн. 2004; 12 (12): 737-740.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО «Бионика Медиа», 2010

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах