URINARY BLADDER SUBSTITUTION USING COMBINED MEMBRANE BASED ON SECRETIONS OF HUMAN MESENCHYMAL STEM CELLS AND TYPE I COLLAGEN


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Aim. Despite the widespread use of intestinal cystoplasty, urinary bladder substitution remains a challenging problem due to the complexity of operations and the potentially high risk of complications. A promising alternative may be bio-engineered collagen-based matrices containing stem cells or their secretions. Material and methods. To evaluate the effectiveness of this bladder substitution modality, an experiment was conducted on 14 male rabbits. The animals underwent resection of urinary bladder, and the formed defect was substituted with a membrane of type I collagen (series 1, 5 rabbits) or a membrane of the same composition containing a conditioned medium with secretion of mesenchymal stem/stromal cells derived from human adipose tissue (series 2, 5 rabbits). In the comparison group (4 rabbits) resection of the bladder and the closure of the defect was carried out without bladder substitution (series 3). Results. At 1 month after surgery, there was a complete epithelization of the inner surface of the implant, and body tissues replaced the collagen matrix. In series 1, the collagen implant was replaced mainly by connective tissue ingrown with occasional solitary smooth muscle cells. In series 2, the newly formed bladder wall contained numerous smooth muscle cells, growing into the collagen matrix and forming the muscular coat. In series 3, the muscular layer regeneration at the scar site was also noted, but it was less intense, which was confirmed by morphometry. In series 2, more active vascularization of the collagen implant occurred due to neo-angiogenesis, which was more intense than that in series 3, and especially in series 1. Functional studies revealed a reduced bladder functional capacity in series 1 and 3, while in series 2 it was close to normal. During filling cystometry, changes in intra-vesical pressure profile in series 2 were close to normal, while in series 1 and 3 infusion of a small volume of saline resulted in a marked increase in intravesical pressure, showing a reduced compliance of the reconstructed bladder. Discussion The study findings show that implants based on type I collagen can be effectively used to substitute a part of the urinary bladder wall, but bio-engineered collagen matrix grafts containing cell regeneration stimulants secreted by stem cells in their culture medium seem to be more promising.

全文:

受限制的访问

作者简介

V. Kirpatovckii

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University; N.A. Lopatkin Scientific Research Institute of Urology and Interventional Radiology - branch of P. A. Herzen Federal Medical Research Center of Minzdrav of Russia

Email: vladkirp@yandex.ru

D. Kamalov

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University

Email: davidffm@mail.ru

A. Efimenko

Institute for Regenerative Medicine, Medical Scientific Educational Center of M.V. Lomonosov Moscow State University

Email: efimenkoan@gmail.com
PhD, Senior Research Fellow

P. Makarevich

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University

Email: pavel.makarevich@gmail.com

G. Sagaradze

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University; LLC «Gene and Cell Therapy»

Email: georgysagaradze@gmail.com

O. Makarevich

LLC «Gene and Cell Therapy»

Email: go.grigorievaolga@gmail.com

P. Nimiritskii

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University; LLC «Gene and Cell Therapy»

Email: nimiritsky@gmail.com

E. Osidak

LLC «IMTEK»

Email: egorosidak@gmail.com

S. Domogatskii

Russian Cardiology Scientific Industrial Complex of Minzdrav of Russia

Email: spdomo@yandex.ru

V. Karpov

Lomonosov Moscow State University

Email: karpov@fbm.msu.ru
Faculty of Fundamental Medicine

Zh. Akopyan

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University

Email: zhanna.fbm@gmail.com
Faculty of Fundamental Medicine

V. Tkachuk

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University

Email: tkachuk@fbm.msu.ru
Faculty of Fundamental Medicine

A. Kamalov

Medical Scientific Educational Center of M.V. Lomonosov Moscow State University

Email: armais.kamalov@rambler.ru
Faculty of Fundamental Medicine

参考

  1. Лопаткин Н.А., Даренков С.П., Чернышев И.В. Радикальное лечение инвазивного рака мочевого пузыря. Урология. 2003;4:3-8
  2. Лоран О.Б., Синякова Л.А., Митрохин А.А., Плесовский А.М., Штейнберг М.Л., Винарова Н.А. Современный взгляд на проблему интерстициального цистита. Медицинский совет. 2011;11-12:15-19
  3. Матвеев Б.П. Рак мочевого пузыря. М., 2001
  4. Abdel-Azim M.S., Abdel-Hakim A.M. Gastrocystoplasty in patients with an areflexic low compliant bladder. Eur Urol. 2003;44(2): 260-265.
  5. Hara I., Miyake H., Hara S. et al. Health-related quality of life after radical cystectomy for bladder cancer: a comparison of ileal conduit and orthotopic bladder replacement. BJU Int. 2002;89:10.
  6. Cohen A.J., Brodie K., Murthy P., Wilcox D.T., Gundeti M.S. Comparative Outcomes and Perioperative Complications of Robotic Vs. Open Cystoplasty and Complex Reconstructions. Urology. 2016 Jul 18. pii: S0090-4295(16)30410-1. doi:10.1016/j. urology.2016.06.053.
  7. Даренков С.П., Кривобородов Г.Г., Котов С.В., Дзитиев В.К., Проскоков А.А., Пинчук И.С. Осложнения радикальной цистэктомии с орто- и гетеротопической кишечной пластикой (обзор литературы). Вестник Российского государственного медицинского университета. 2013;4:49-53
  8. Семенякин И.В., Васильченко М.И., Зеленин Д.А., Яшин Е.А. Осложнения после цистэктомии и их лечение. Бюллетень Восточно-Сибирского научного центра сибирского отделения Российской академии медицинских наук. 2012;4-1(86):84-86
  9. Chang S.S., Cookson M.S., Baumgartner R.G., Wells N., Smith J.A. Jr. Analysis of Early Complications After Radical Cystectomy: Results of a Collaborative Care Pathway. J. Urol. 2002;167:2012-2016.
  10. de Freitas Filho L.G., Carnevale J., Leao J.Q., Schor N., Ortiz V. Gastrocystoplasty and chronic renal failure: an acid-base metabolism study. J. Urol. 2001;166(1):251 -254.
  11. Lin H.K., Madihally S.V., Palmer B., Frimberger D., Fung K.M., Kropp B.P. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev. 2015;82-83:47-63. doi: 10.1016/j.addr.2014.11.020.
  12. Щукина Е.В., Сапожникова А.И. Коллаген в медицине и косметологии. Натуральная фармакология и косметология. 2005;4:29-34
  13. Бегма А.Н., Бегма И.В., Хомякова Е.К.Опыт применения коллагеновых повязок и губок Метуракол в хирургической практике. РМЖ. 2014;17:1248-1253
  14. Иванова Л.А. Коллаген в технологии лекарственных форм. М.: Медицина. 1984. 112 с
  15. Кирпатовский В.И., Ефименко А.Ю., Сысоева В.Ю., Мудрая И.С., Камалов Д.М., Акопян Ж А, Камалов А.А. Использование мембраны из коллагена 1-го типа для замещения стенки мочевого пузыря. Бюллетень экспериментальной биологии и медицины. 2016;7:117-123
  16. Caione P., Boldrini R., Salerno A., Nappo S.G. Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int. 2012;28(4):421-28. doi: 10.1007/s00383-012-3063-0.
  17. Tu D.D., Seth A., Gil E.S., Kaplan D.L., Mauney J.R., Estrada C.R. Jr. Evaluation of biomaterials for bladder augmentation using cystometric analyses in various rodent models. J Vis Exp. 2012;(66). pii: 3981. doi: 10.3791/3981.
  18. Joseph D.B., Borer J.G., De Filippo R.E., Hodges S.J., McLorie G.A. Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol. 2014;191(5):1389-95. doi: 10.1016/j.juro.2013.10.103.
  19. Chun S.Y., Kwon J.B., Chae S.Y., Lee J.K., Bae J.S., Kim B.S., Kim H.T., Yoo E.S., Lim J.O., Yoo J.J., Kim W.J., Kim B.W., Kwon T.G. Combined injection of three different lineages of early-differentiating human amniotic fluid-derived cells restores urethral sphincter function in urinary incontinence. BJU Int. 2014;114(5):770-83. doi: 10.1111/bju.12815.
  20. Yuan H., Zhuang Y., Xiong J., Zhi W., Liu L., Wei Q., Han P. Human umbilical mesenchymal stem cells-seeded bladder acellular matrix grafts for reconstruction of bladder defects in a canine model. PLoS One. 2013;8(11):e80959. doi: 10.1371/journal.pone.0080959.
  21. Ma D., Ren L., Mao T. Research progress of cell sheet technology and its applications in tissue engineering and regenerative medicine. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2014;31(5):1164-1167.
  22. Kates M., Singh A., Matsui H., Steinberg G.D., Smith N.D., Schoenberg M.P., Bivalacqua T.J. Tissue-engineered urinary conduits. Curr Urol Rep. 2015;16(3):8. doi: 10.1007/s11934-015-0480-3.
  23. Qin D., Long T., Deng J., Zhang Y. Urine-derived stem cells for potential use in bladder repair. Stem Cell Res Ther. 2014;5(3):69. doi: 10.1186/scrt458.
  24. Meng L.C., Liao W.B., Yang S.X., Xiong Y.H., Song C., Liu L.Q. Seeding Homologous Adipose-Derived Stem Cells and Bladder Smooth Muscle Cells Into Bladder Submucosa Matrix for Reconstructing the Ureter in a Rabbit Model. Transplant Proc. 2015;47(10):3002-11. doi: 10.1016/j.transproceed.2015.10.035.
  25. Adamowicz J., Pokrywczynska M., Drewa T. Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials. Med Hypotheses. 2014;82(6):670- 73. doi: 10.1016/j.mehy.2014.02.027.
  26. Pokrywczynska M., Jundzill A., Bodnar M., Adamowicz J., Tworkiewicz J., Szylberg L., Debski R., Marszalek A., Drewa T. Do mesenchymal stem cells modulate the milieu of reconstructed bladder wall? Arch Immunol Ther Exp (Warsz). 2013;61(6):483-93. doi:10.1007/ s00005-013-0249-7.
  27. Bury M.I., Fuller N.J., Wethekam L., Sharma A.K. Bone marrow derived cells facilitate urinary bladder regeneration by attenuating tissue inflammatory responses. Cent European J Urol. 2015;68(1):115-20. doi: 10.5173/ceju.2015.01.526.
  28. Loai Y., Yeger H., Coz C., Antoon R., Islam S.S., Moore K., Farhat W.A. Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J Biomed Mater Res A. 2010;94(4):1205-15. doi: 10.1002/jbm.a.32777.
  29. Domingos A.L., Garcia S.B., Bessa Junior Jd, Cassini M.F., Molina C.A., Tucci Junior S. Expression of VEGF and collagen using a latex biomembrane as bladder replacement in rabbits. Int Braz J Urol. 2012;38(4):536-543.
  30. Chen W., Shi C., Yi S., Chen B., Zhang W., Fang Z., Wei Z., Jiang S., Sun X., Hou X., Xiao Z., Ye G., Dai J. Bladder regeneration by collagen scaffolds with collagen binding human basic fibroblast growth factor. J Urol. 2010;183(6):2432-39. doi: 10.1016/j.juro.2010.02.042.
  31. Yang B., Zhou L., Peng B., Sun Z., Dai Y., Zheng J. In vitro comparative evaluation of recombinant growth factors for tissue engineering of bladder in patients with neurogenic bladder. J Surg Res. 2014;186(1):63-72. doi: 10.1016/j.jss.2013.07.044
  32. Roelofs L.A., Oosterwijk E., Kortmann B.B., Daamen W.F., Tiemessen D.M., Brouwer K.M., Eggink A.J., Crevels A.J., Wijnen R.M., van Kuppevelt T.H., Geutjes P.J., Feitz W.F. Bladder Regeneration Using a Smart Acellular Collagen Scaffold with Growth Factors VEGF, FGF2 and HB-EGF. Tissue Eng Part A. 2016;22(1-2):83- 92. doi: 10.1089/ten.TEA.2015.0096.
  33. Lee J.N., Chun S.Y., Lee H.J., Jang Y.J., Choi S.H., Kim D.H., Oh S.H., Song P.H., Lee J.H., Kim J.K., Kwon T.G. Human Urine-derived Stem Cells Seeded Surface Modified Composite Scaffold Grafts for Bladder Reconstruction in a Rat Model. J Korean Med Sci. 2015;30(12):1754-63. doi: 10.3346/jkms.2015.30.12.1754.
  34. Chen W., Shi C., Hou X., Zhang W., Li L. Bladder acellular matrix conjugated with basic fibroblast growth factor for bladder regeneration. Tissue Eng Part A. 2014;20(15-16):2234-42. doi: 10.1089/ten.TEA.2013.0730.
  35. Lorentz K.M., Yang L., Frey P., Hubbell J.A. Engineered insulin-like growth factor-1 for improved smooth muscle regeneration. Biomaterials. 2012;33(2):494-503. Doi: 10.1016/j. biomaterials.2011.09.088.
  36. Vardar E., Larsson H.M., Engelhardt E.M., Pinnagoda K., Briquez P.S., Hubbell A., Frey P. IGF-1-containing multi-layered collagen-fibrin hybrid scaffolds for bladder tissue engineering. Acta Biomater. 2016;41:75-85. doi: 10.1016/j.actbio.2016.06.010.
  37. Zhou L., Yang B., Sun C., Qiu X., Sun Z., Chen Y., Zhang Y., Dai Y. Coadministration of platelet-derived growth factor-BB and vascular endothelial growth factor with bladder acellular matrix enhances smooth muscle regeneration and vascularization for bladder augmentation in a rabbit model. Tissue Eng Part A. 2013;19(1-2):264-76. doi: 10.1089/ten.TEA.2011.0609.
  38. Jiang X., Lin H., Jiang D., Xu G., Fang X., He L., Xu M., Tang B., Wang Z., Cui D., Chen F., Geng H. Co-delivery of VEGF and bFGF via a PLGA nanoparticle-modified BAM for effective contracture inhibition of regenerated bladder tissue in rabbits. Sci Rep. 20168;6:20784. doi: 10.1038/ srep20784.
  39. Jiang X., Xiong Q., Xu G., Lin H., Fang X., Cui D., Xu M., Chen F., Geng H. VEGF-Loaded Nanoparticle-Modified BAMAs Enhance Angiogenesis and Inhibit Graft Shrinkage in Tissue-Engineered Bladder. Ann Biomed Eng. 2015;43(10):2577-86. Doi: 10.1007/ s10439-015-1284-9.
  40. Xiong Q., Lin H., Hua X., Liu L., Sun P., Zhao Z., Shen X., Cui D., Xu M., Chen F., Geng H. A nanomedicine approach to effectively inhibit contracture during bladder acellular matrix allograft-induced bladder regeneration by sustained delivery of vascular endothelial growth factor. Tissue Eng Part A. 2015;21(1-2):45-52. doi: 10.1089/ten. TEA.2013.0671.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bionika Media, 2016
##common.cookie##