Revolutionizing Cancer Treatment: Unleashing the Power of Combining Oncolytic Viruses with CAR-T Cells


Цитировать

Полный текст

Аннотация

:Oncolytic Viruses (OVs) have emerged as a promising treatment option for cancer thanks to their significant research potential and encouraging results. These viruses exert a profound impact on the tumor microenvironment, making them effective against various types of cancer. In contrast, the efficacy of Chimeric antigen receptor (CAR)-T cell therapy in treating solid tumors is relatively low. The combination of OVs and CAR-T cell therapy, however, is a promising area of research. OVs play a crucial role in enhancing the tumor-suppressive microenvironment, which in turn enables CAR-T cells to function efficiently in the context of solid malignancies. This review aims to provide a comprehensive analysis of the benefits and drawbacks of OV therapy and CAR-T cell therapy, with a focus on the potential of combining these two treatment approaches.

Об авторах

Lin Zhang

Department of Dermatology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

ShuXian Guo

Department of Dermatology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

ShuYing Chang

Department of Dermatology, Affiliated Hospital of Xuzhou Medical University

Email: info@benthamscience.net

Guan Jiang

Department of Dermatology, Affiliated Hospital of Xuzhou Medical University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Jafari, M.; Kadkhodazadeh, M.; Shapourabadi, M.B.; Goradel, N.H.; Shokrgozar, M.A.; Arashkia, A.; Abdoli, S.; Sharifzadeh, Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front. Immunol., 2022, 13, 1012806. doi: 10.3389/fimmu.2022.1012806 PMID: 36311790
  2. Abd-Aziz, N.; Poh, C.L. Development of oncolytic viruses for cancer therapy. Transl. Res., 2021, 237, 98-123. doi: 10.1016/j.trsl.2021.04.008 PMID: 33905949
  3. Jin, KT.; Tao, XH.; Fan, YB.; Wang, SB. Crosstalk between oncolytic viruses and autophagy in cancer therapy. Biomed. Pharm., 2021, 134, 110932. doi: 10.1016/j.biopha.2020.110932
  4. Heidbuechel, J.P.W.; Engeland, C.E. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hematol. Oncol., 2021, 14(1), 63. doi: 10.1186/s13045-021-01075-5 PMID: 33863363
  5. Oh, C.M.; Chon, H.J.; Kim, C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int. J. Mol. Sci., 2020, 21(20), 7743. doi: 10.3390/ijms21207743 PMID: 33086754
  6. Burchett, R.; Walsh, S.; Wan, Y.; Bramson, J.L. A rational relationship: Oncolytic virus vaccines as functional partners for adoptive T cell therapy. Cytokine Growth Factor Rev., 2020, 56, 149-159. doi: 10.1016/j.cytogfr.2020.07.003 PMID: 32665126
  7. Ghasemi, M.; Abbasi, L.; Ghanbari Naeini, L.; Kokabian, P.; Nameh, G.F.N.; Givtaj, N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front. Immunol., 2023, 13, 950079. doi: 10.3389/fimmu.2022.950079 PMID: 36703982
  8. Leber, M.F.; Neault, S.; Jirovec, E.; Barkley, R.; Said, A.; Bell, J.C.; Ungerechts, G. Engineering and combining oncolytic measles virus for cancer therapy. Cytokine Growth Factor Rev., 2020, 56, 39-48. doi: 10.1016/j.cytogfr.2020.07.005 PMID: 32718830
  9. Chen, T.; Ding, X.; Liao, Q.; Gao, N.; Chen, Y.; Zhao, C.; Zhang, X.; Xu, J. IL-21 arming potentiates the anti-tumor activity of an oncolytic vaccinia virus in monotherapy and combination therapy. J. Immunother. Cancer, 2021, 9(1), e001647. doi: 10.1136/jitc-2020-001647 PMID: 33504576
  10. Martin, N.T.; Bell, J.C. Oncolytic virus combination therapy: Killing one bird with two stones. Mol. Ther., 2018, 26(6), 1414-1422. doi: 10.1016/j.ymthe.2018.04.001
  11. Hu, P.Y.; Fan, X.M.; Zhang, Y.N.; Wang, S.B.; Wan, W.J.; Pan, H.Y.; Mou, X.Z. The limiting factors of oncolytic virus immunotherapy and the approaches to overcome them. Appl. Microbiol. Biotechnol., 2020, 104(19), 8231-8242. doi: 10.1007/s00253-020-10802-w PMID: 32816087
  12. Macedo, N.; Miller, D.M.; Haq, R.; Kaufman, H.L. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer, 2020, 8(2), e001486. doi: 10.1136/jitc-2020-001486 PMID: 33046622
  13. Shi, T.; Song, X.; Wang, Y.; Liu, F.; Wei, J. Combining oncolytic viruses with cancer immunotherapy: Establishing a new generation of cancer treatment. Front. Immunol., 2020, 11, 683. doi: 10.3389/fimmu.2020.00683 PMID: 32411132
  14. Yoo, S.Y.; Narayanasamy, B.; Heo, J. Viruses as nanomedicine for cancer. Int. J. Nanomed., 2016, 11, 4835-4847. doi: 10.2147/IJN.S116447 PMID: 27703350
  15. Ogawa, M.; Yu, W.G.; Umehara, K.; Iwasaki, M.; Wijesuriya, R.; Tsujimura, T.; Kubo, T.; Fujiwara, H.; Hamaoka, T. Multiple roles of interferon-gamma in the mediation of interleukin 12-induced tumor regression. Cancer Res., 1998, 58(11), 2426-2432. PMID: 9622084
  16. Knapp, J.P.; Kakish, J.E.; Bridle, B.W.; Speicher, D.J. Tumor temperature: Friend or foe of virus-based cancer immunotherapy. Biomedicines, 2022, 10(8), 2024. doi: 10.3390/biomedicines10082024 PMID: 36009571
  17. Zhu, Z.; McGray, A.J.R.; Jiang, W.; Lu, B.; Kalinski, P.; Guo, Z.S. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol. Cancer, 2022, 21(1), 196. doi: 10.1186/s12943-022-01664-z PMID: 36221123
  18. Watanabe, D.; Goshima, F. Oncolytic virotherapy by HSV. Adv. Exp. Med. Biol., 2018, 1045, 63-84. doi: 10.1007/978-981-10-7230-7_4 PMID: 29896663
  19. Arab, A.; Behravan, N.; Razazn, A.; Barati, N.; Mosaffa, F.; Nicastro, J.; Slavcev, R.; Behravan, J. The viral approach to breast cancer immunotherapy. J. Cell. Physiol., 2019, 234(2), 1257-1267. doi: 10.1002/jcp.27150 PMID: 30146692
  20. Breitbach, C.J.; Lichty, B.D.; Bell, J.C. Oncolytic viruses: Therapeutics with an identity crisis. EBioMedicine, 2016, 9, 31-36. doi: 10.1016/j.ebiom.2016.06.046 PMID: 27407036
  21. Feola, S.; Russo, S.; Ylösmäki, E.; Cerullo, V. Oncolytic ImmunoViroTherapy: A long history of crosstalk between viruses and immune system for cancer treatment. Pharmacol. Ther., 2022, 236, 108103. doi: 10.1016/j.pharmthera.2021.108103 PMID: 34954301
  22. Nguyen, H.M.; Guz-Montgomery, K.; Saha, D. Oncolytic virus encoding a master pro-inflammatory cytokine interleukin 12 in cancer immunotherapy. Cells, 2020, 9(2), 400. doi: 10.3390/cells9020400 PMID: 32050597
  23. Bommareddy, P.K.; Patel, A.; Hossain, S.; Kaufman, H.L. Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am. J. Clin. Dermatol., 2017, 18(1), 1-15. doi: 10.1007/s40257-016-0238-9 PMID: 27988837
  24. Shen, Z.; Liu, X.; Fan, G.; Na, J.; Liu, Q.; Lin, F.; Zhang, Z.; Zhong, L. Improving the therapeutic efficacy of oncolytic viruses for cancer: targeting macrophages. J. Transl. Med., 2023, 21(1), 842. doi: 10.1186/s12967-023-04709-z PMID: 37993941
  25. Hastie, E.; Grdzelishvili, V.Z. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol., 2012, 93(12), 2529-2545. doi: 10.1099/vir.0.046672-0 PMID: 23052398
  26. Lin, D.; Shen, Y.; Liang, T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct. Target. Ther., 2023, 8(1), 156. doi: 10.1038/s41392-023-01407-6 PMID: 37041165
  27. Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J.; Swanson, E.; Kennedy, R.; Coffey, M.; Loghmani, H.; Sanchez-Perez, L.; Olivier, G.; Harrington, K.; Pandha, H.; Melcher, A.; Diaz, R.M.; Vile, R.G. Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med., 2022, 14(640), eabn2231. doi: 10.1126/scitranslmed.abn2231 PMID: 35417192
  28. van der Woude, L.L.; Gorris, M.A.J.; Halilovic, A.; Figdor, C.G.; de Vries, I.J.M. Migrating into the Tumor: a Roadmap for T Cells. Trends Cancer, 2017, 3(11), 797-808. doi: 10.1016/j.trecan.2017.09.006 PMID: 29120755
  29. Sprague, L.; Lee, J.; Hutzen, B.; Wang, P.Y.; Chen, C.Y.; Conner, J.; Braidwood, L.; Cassady, K.; Cripe, T. High mobility group box 1 influences HSV1716 spread and acts as an adjuvant to chemotherapy. Viruses, 2018, 10(3), 132. doi: 10.3390/v10030132 PMID: 29543735
  30. Krysko, D.V.; Garg, A.D.; Kaczmarek, A.; Krysko, O.; Agostinis, P.; Vandenabeele, P. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer, 2012, 12(12), 860-875. doi: 10.1038/nrc3380 PMID: 23151605
  31. Evgin, L.; Vile, R.G. Parking CAR T cells in tumours: Oncolytic viruses as valets or vandals? Cancers (Basel), 2021, 13(5), 1106. doi: 10.3390/cancers13051106 PMID: 33807553
  32. Kim, Y.; Clements, D.; Sterea, A.; Jang, H.; Gujar, S.; Lee, P. Dendritic cells in oncolytic virus-based anti-cancer therapy. Viruses, 2015, 7(12), 6506-6525. doi: 10.3390/v7122953 PMID: 26690204
  33. Tian, Y.; Xie, D.; Yang, L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct. Target. Ther., 2022, 7(1), 117. doi: 10.1038/s41392-022-00951-x PMID: 35387984
  34. Burke, S.; Shergold, A.; Elder, M.J.; Whitworth, J.; Cheng, X.; Jin, H.; Wilkinson, R.W.; Harper, J.; Carroll, D.K. Oncolytic Newcastle disease virus activation of the innate immune response and priming of antitumor adaptive responses in vitro. Cancer Immunol. Immunother., 2020, 69(6), 1015-1027. doi: 10.1007/s00262-020-02495-x PMID: 32088771
  35. Reddy, R.; Yan, S.C.; Hasanpour, S.Z.; Hosseini-Siyanaki, M.R.; Poe, J.; Perez-Vega, C.; Chiocca, E.A.; Lucke-Wold, B. Oncolytic viral therapy: A review and promising future directions. J. Neurosurg., 2024, 140(2), 319-327. doi: 10.3171/2023.6.JNS23243 PMID: 37877961
  36. Enow, J.A.; Sheikh, H.I.; Rahman, M.M. Tumor tropism of DNA viruses for oncolytic virotherapy. Viruses, 2023, 15(11), 2262. doi: 10.3390/v15112262 PMID: 38005938
  37. Bommareddy, P.K.; Shettigar, M.; Kaufman, H.L. Integrating oncolytic viruses in combination cancer immunotherapy. Nat. Rev. Immunol., 2018, 18(8), 498-513. doi: 10.1038/s41577-018-0014-6 PMID: 29743717
  38. Cook, M.; Chauhan, A. Clinical application of oncolytic viruses: A systematic review. Int. J. Mol. Sci., 2020, 21(20), 7505. doi: 10.3390/ijms21207505 PMID: 33053757
  39. Ajina, A.; Maher, J. Prospects for combined use of oncolytic viruses and CAR T-cells. J. Immunother. Cancer, 2017, 5(1), 90. doi: 10.1186/s40425-017-0294-6 PMID: 29157300
  40. Su, W.; Qiu, W.; Li, S.J.; Wang, S.; Xie, J.; Yang, Q.C.; Xu, J.; Zhang, J.; Xu, Z.; Sun, Z.J. A dual‐responsive STAT3 inhibitor nanoprodrug combined with oncolytic virus elicits synergistic antitumor immune responses by igniting pyroptosis. Adv. Mater., 2023, 35(11), 2209379. doi: 10.1002/adma.202209379 PMID: 36545949
  41. Ylösmäki, E.; Cerullo, V. Design and application of oncolytic viruses for cancer immunotherapy. Curr. Opin. Biotechnol., 2020, 65, 25-36. doi: 10.1016/j.copbio.2019.11.016 PMID: 31874424
  42. Chen, L.; Zuo, M.; Zhou, Q.; Wang, Y. Oncolytic virotherapy in cancer treatment: Challenges and optimization prospects. Front. Immunol., 2023, 14, 1308890. doi: 10.3389/fimmu.2023.1308890 PMID: 38169820
  43. Groeneveldt, C.; van den Ende, J.; van Montfoort, N. Preexisting immunity: Barrier or bridge to effective oncolytic virus therapy? Cytokine Growth Factor Rev., 2023, 70, 1-12. doi: 10.1016/j.cytogfr.2023.01.002 PMID: 36732155
  44. Roulstone, V.; Mansfield, D.; Harris, R.J.; Twigger, K.; White, C.; de Bono, J.; Spicer, J.; Karagiannis, S.N.; Vile, R.; Pandha, H.; Melcher, A.; Harrington, K. Antiviral antibody responses to systemic administration of an oncolytic RNA virus: the impact of standard concomitant anticancer chemotherapies. J. Immunother. Cancer, 2021, 9(7), e002673. doi: 10.1136/jitc-2021-002673 PMID: 34301814
  45. Rivadeneira, D.B.; DePeaux, K.; Wang, Y.; Kulkarni, A.; Tabib, T.; Menk, A.V.; Sampath, P.; Lafyatis, R.; Ferris, R.L.; Sarkar, S.N.; Thorne, S.H.; Delgoffe, G.M. Oncolytic viruses engineered to enforce leptin expression reprogram tumor-infiltrating T cell metabolism and promote tumor clearance. Immunity, 2019, 51(3), 548-560.e4. doi: 10.1016/j.immuni.2019.07.003 PMID: 31471106
  46. Martinez-Quintanilla, J.; He, D.; Wakimoto, H.; Alemany, R.; Shah, K. Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol. Ther., 2015, 23(1), 108-118. doi: 10.1038/mt.2014.204
  47. Andtbacka, R.H.I.; Kaufman, H.L.; Collichio, F.; Amatruda, T.; Senzer, N.; Chesney, J.; Delman, K.A.; Spitler, L.E.; Puzanov, I.; Agarwala, S.S.; Milhem, M.; Cranmer, L.; Curti, B.; Lewis, K.; Ross, M.; Guthrie, T.; Linette, G.P.; Daniels, G.A.; Harrington, K.; Middleton, M.R.; Miller, W.H., Jr; Zager, J.S.; Ye, Y.; Yao, B.; Li, A.; Doleman, S.; VanderWalde, A.; Gansert, J.; Coffin, R.S. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol., 2015, 33(25), 2780-2788. doi: 10.1200/JCO.2014.58.3377 PMID: 26014293
  48. Todo, T.; Ito, H.; Ino, Y.; Ohtsu, H.; Ota, Y.; Shibahara, J.; Tanaka, M. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: A phase 2 trial. Nat. Med., 2022, 28(8), 1630-1639. doi: 10.1038/s41591-022-01897-x PMID: 35864254
  49. Rezaei, R.; Esmaeili, G.G.H.; Farzanehpour, M.; Dorostkar, R.; Ranjbar, R.; Bolandian, M.; Mirzaei, N.M.; Ghorbani, A.A. Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy. Cancer Gene Ther., 2022, 29(6), 647-660. doi: 10.1038/s41417-021-00359-9 PMID: 34158626
  50. Gagelmann, N.; Riecken, K.; Wolschke, C.; Berger, C.; Ayuk, F.A.; Fehse, B.; Kröger, N. Development of CAR-T cell therapies for multiple myeloma. Leukemia, 2020, 34(9), 2317-2332. doi: 10.1038/s41375-020-0930-x PMID: 32572190
  51. Tudor, T.; Binder, Z.A.; O’Rourke, D.M. CAR T Cells. Neurosurg. Clin. N. Am., 2021, 32(2), 249-263. doi: 10.1016/j.nec.2020.12.005 PMID: 33781506
  52. Martinez, M.; Moon, E.K. CAR T cells for solid tumors: New strategies for finding, infiltrating, and surviving in the tumor microenvironment. Front. Immunol., 2019, 10, 128. doi: 10.3389/fimmu.2019.00128 PMID: 30804938
  53. Watanabe, N.; McKenna, M.K.; Rosewell Shaw, A.; Suzuki, M. Clinical CAR-T cell and oncolytic virotherapy for cancer treatment. Mol. Ther., 2021, 29(2), 505-520. doi: 10.1016/j.ymthe.2020.10.023
  54. Honikel, M.M.; Olejniczak, S.H. Co-stimulatory receptor signaling in CAR-T cells. Biomolecules, 2022, 12(9), 1303. doi: 10.3390/biom12091303 PMID: 36139142
  55. Adachi, K.; Kano, Y.; Nagai, T.; Okuyama, N.; Sakoda, Y.; Tamada, K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol., 2018, 36(4), 346-351. doi: 10.1038/nbt.4086 PMID: 29505028
  56. Dagher, O.; King, T.R.; Wellhausen, N.; Posey, A.D. Combination therapy for solid tumors: Taking a classic CAR on new adventures. Cancer Cell, 2020, 38(5), 621-623. doi: 10.1016/j.ccell.2020.10.003 PMID: 33064993
  57. Abramson, J.S. Anti-CD19 CAR T-cell therapy for B-cell non-hodgkin lymphoma. Transfus. Med. Rev., 2020, 34(1), 29-33. doi: 10.1016/j.tmrv.2019.08.003 PMID: 31677848
  58. McKenna, M.K.; Englisch, A.; Brenner, B.; Smith, T.; Hoyos, V.; Suzuki, M.; Brenner, M.K. Mesenchymal stromal cell delivery of oncolytic immunotherapy improves CAR-T cell antitumor activity. Mol. Ther., 2021, 29(5), 1808-1820.
  59. Yang, C.; Hua, N.; Xie, S.; Wu, Y.; Zhu, L.; Wang, S.; Tong, X. Oncolytic viruses as a promising therapeutic strategy for hematological malignancies. Biomed. Pharm., 2021, 139, 111573. doi: 10.1016/j.biopha.2021.111573
  60. Ma, S.; Li, X.; Wang, X.; Cheng, L.; Li, Z.; Zhang, C.; Ye, Z.; Qian, Q. Current progress in CAR-T cell therapy for solid tumors. Int. J. Biol. Sci., 2019, 15(12), 2548-2560. doi: 10.7150/ijbs.34213 PMID: 31754328
  61. Wang, L.; Yao, R.; Zhang, L.; Fan, C.; Ma, L.; Liu, J. Chimeric antigen receptor T cell therapy and other therapeutics for malignancies: Combination and opportunity. Int. Immunopharmacol., 2019, 70, 498-503. doi: 10.1016/j.intimp.2019.01.010 PMID: 30875561
  62. Ukrainskaya, V.M.; Musatova, O.E.; Volkov, D.V.; Osipova, D.S.; Pershin, D.S.; Moysenovich, A.M.; Evtushenko, E.G.; Kulakovskaya, E.A.; Maksimov, E.G.; Zhang, H.; Rubtsov, Y.P.; Maschan, M.A.; Stepanov, A.V.; Gabibov, A.G. CAR-tropic extracellular vesicles carry tumor-associated antigens and modulate CAR T cell functionality. Sci. Rep., 2023, 13(1), 463. doi: 10.1038/s41598-023-27604-5 PMID: 36627334
  63. He, C.; Mansilla-Soto, J.; Khanra, N.; Hamieh, M.; Bustos, V.; Paquette, A.J.; Garcia, A.A.; Shore, D.M.; Rice, W.J.; Khelashvili, G.; Sadelain, M.; Meyerson, J.R. CD19 CAR antigen engagement mechanisms and affinity tuning. Sci. Immunol., 2023, 8(81), eadf1426. doi: 10.1126/sciimmunol.adf1426 PMID: 36867678
  64. Calderon, H.; Mamonkin, M.; Guedan, S. Analysis of CAR-mediated tonic signaling. Methods Mol. Biol., 2020, 2086, 223-236. doi: 10.1007/978-1-0716-0146-4_17 PMID: 31707680
  65. Zhao, Z.; Chen, Y.; Francisco, N.M.; Zhang, Y.; Wu, M. The application of CAR-T cell therapy in hematological malignancies: advantages and challenges. Acta Pharm. Sin. B, 2018, 8(4), 539-551. doi: 10.1016/j.apsb.2018.03.001 PMID: 30109179
  66. Castelletti, L.; Yeo, D.; van Zandwijk, N.; Rasko, J.E.J. Anti-Mesothelin CAR T cell therapy for malignant mesothelioma. Biomark. Res., 2021, 9(1), 11. doi: 10.1186/s40364-021-00264-1 PMID: 33588928
  67. Zhang, C.; Liu, J.; Zhong, J.F.; Zhang, X. Engineering CAR-T cells. Biomark. Res., 2017, 5(1), 22. doi: 10.1186/s40364-017-0102-y PMID: 28652918
  68. Tang, X.Y.; Ding, Y.S.; Zhou, T.; Wang, X.; Yang, Y. Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors. Cancer Lett., 2021, 503, 69-74. doi: 10.1016/j.canlet.2021.01.014 PMID: 33476650
  69. Porter, C.E.; Rosewell, S.A.; Jung, Y.; Yip, T.; Castro, P.D.; Sandulache, V.C.; Sikora, A.; Gottschalk, S.; Ittman, M.M.; Brenner, M.K. Oncolytic adenovirus armed with BiTE, cytokine, and checkpoint inhibitor enables CAR T cells to control the growth of heterogeneous tumors. Mol. Ther. J. American Soci. Gene Ther., 2020, 28(5), 1251-1262. doi: 10.1016/j.ymthe.2020.02.016
  70. Rosewell, S.A.; Porter, C.E.; Watanabe, N.; Tanoue, K.; Sikora, A.; Gottschalk, S.; Brenner, M.K.; Suzuki, M. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol. Ther., 2017, 25(11), 2440-2451. doi: 10.1016/j.ymthe.2017.09.010
  71. Hong, M.; Clubb, J.D.; Chen, Y.Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell, 2020, 38(4), 473-488. doi: 10.1016/j.ccell.2020.07.005 PMID: 32735779
  72. Liu, M.; López de Juan Abad, B.; Cheng, K. Cardiac fibrosis: Myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev., 2021, 173, 504-519. doi: 10.1016/j.addr.2021.03.021 PMID: 33831476
  73. Dong, X.; Ren, J.; Amoozgar, Z.; Lee, S.; Datta, M.; Roberge, S.; Duquette, M.; Fukumura, D.; Jain, R.K. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J. Immunother. Cancer, 2023, 11(3), e005583. doi: 10.1136/jitc-2022-005583 PMID: 36898734
  74. Norberg, S.M.; Hinrichs, C.S. Engineered T cell therapy for viral and non-viral epithelial cancers. Cancer Cell, 2023, 41(1), 58-69. doi: 10.1016/j.ccell.2022.10.016 PMID: 36400016
  75. Majzner, R.G.; Mackall, C.L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov., 2018, 8(10), 1219-1226. doi: 10.1158/2159-8290.CD-18-0442 PMID: 30135176
  76. Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov., 2020, 19(3), 185-199. doi: 10.1038/s41573-019-0051-2 PMID: 31900462
  77. Chasov, V.; Zmievskaya, E.; Ganeeva, I.; Gilyazova, E.; Davletshin, D.; Khaliulin, M.; Kabwe, E.; Davidyuk, Y.N.; Valiullina, A.; Bulatov, E. Immunotherapy strategy for systemic autoimmune diseases: Betting on CAR-T cells and antibodies. Antibodies (Basel, Switzerland), 2024, 13(1), 10. doi: 10.3390/antib13010010 PMID: 38390871
  78. Khan, A.N.; Chowdhury, A.; Karulkar, A.; Jaiswal, A.K.; Banik, A.; Asija, S.; Purwar, R. Immunogenicity of CAR-T cell therapeutics: Evidence, mechanism and mitigation. Front. Immunol., 2022, 13, 886546. doi: 10.3389/fimmu.2022.886546 PMID: 35677038
  79. Chen, Y.J.; Abila, B.; Mostafa Kamel, Y. CAR-T: What Is Next? Cancers (Basel), 2023, 15(3), 663. doi: 10.3390/cancers15030663 PMID: 36765623
  80. Arjomandnejad, M.; Kopec, A.L.; Keeler, A.M. CAR-T regulatory (CAR-Treg) cells: Engineering and applications. Biomedicines, 2022, 10(2), 287. doi: 10.3390/biomedicines10020287 PMID: 35203496
  81. Delgoffe, G.M.; Xu, C.; Mackall, C.L.; Green, M.R.; Gottschalk, S.; Speiser, D.E.; Zehn, D.; Beavis, P.A. The role of exhaustion in CAR T cell therapy. Cancer Cell, 2021, 39(7), 885-888. doi: 10.1016/j.ccell.2021.06.012 PMID: 34256903
  82. Bao, C.; Gao, Q.; Li, L.L.; Han, L.; Zhang, B.; Ding, Y.; Song, Z.; Zhang, R.; Zhang, J.; Wu, X.H. The Application of Nanobody in CAR-T Therapy. Biomolecules, 2021, 11(2), 238. doi: 10.3390/biom11020238 PMID: 33567640
  83. Sheth, V.S.; Gauthier, J. Taming the beast: CRS and ICANS after CAR T-cell therapy for ALL. Bone Marrow Transplant., 2021, 56(3), 552-566. doi: 10.1038/s41409-020-01134-4 PMID: 33230186
  84. Hayden, P.J.; Roddie, C.; Bader, P.; Basak, G.W.; Bonig, H.; Bonini, C.; Chabannon, C.; Ciceri, F.; Corbacioglu, S.; Ellard, R.; Sanchez-Guijo, F.; Jäger, U.; Hildebrandt, M.; Hudecek, M.; Kersten, M.J.; Köhl, U.; Kuball, J.; Mielke, S.; Mohty, M.; Murray, J.; Nagler, A.; Rees, J.; Rioufol, C.; Saccardi, R.; Snowden, J.A.; Styczynski, J.; Subklewe, M.; Thieblemont, C.; Topp, M.; Ispizua, Á.U.; Chen, D.; Vrhovac, R.; Gribben, J.G.; Kröger, N.; Einsele, H.; Yakoub-Agha, I. Management of adults and children receiving CAR T-cell therapy: 2021 best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) and the European Haematology Association (EHA). Ann. Oncol., 2022, 33(3), 259-275. doi: 10.1016/j.annonc.2021.12.003 PMID: 34923107
  85. Schubert, M.L.; Schmitt, M.; Wang, L.; Ramos, C.A.; Jordan, K.; Müller-Tidow, C.; Dreger, P. Side-effect management of chimeric antigen receptor (CAR) T-cell therapy. Ann. Oncol., 2021, 32(1), 34-48. doi: 10.1016/j.annonc.2020.10.478 PMID: 33098993
  86. Ahmad, A. CAR-T Cell Therapy. Int. J. Mol. Sci., 2020, 21(12), 4303. doi: 10.3390/ijms21124303 PMID: 32560285
  87. Coppola, C.; Hopkins, B.; Huhn, S.; Du, Z.; Huang, Z.; Kelly, W.J. Investigation of the Impact from IL-2, IL-7, and IL-15 on the Growth and Signaling of Activated CD4+ T Cells. Int. J. Mol. Sci., 2020, 21(21), 7814. doi: 10.3390/ijms21217814 PMID: 33105566
  88. Xu, J.; Wang, Y.; Shi, J.; Liu, J.; Li, Q.; Chen, L. Combination therapy: A feasibility strategy for CAR T cell therapy in the treatment of solid tumors. (Review) Oncol. Lett., 2018, 16(2), 2063-2070. doi: 10.3892/ol.2018.8946 PMID: 30008901
  89. Berkey, S.E.; Thorne, S.H.; Bartlett, D.L. Oncolytic virotherapy and the tumor microenvironment. Adv. Exp. Med. Biol., 2017, 1036, 157-172. doi: 10.1007/978-3-319-67577-0_11 PMID: 29275471
  90. Wenthe, J.; Naseri, S.; Labani-Motlagh, A.; Enblad, G.; Wikström, K.I.; Eriksson, E.; Loskog, A.; Lövgren, T.; Boosting, CAR. T-cell responses in lymphoma by simultaneous targeting of CD40/4-1BB using oncolytic viral gene therapy. Cancer Immunol. Immunother., 2021, 70(10), 2851-2865. doi: 10.1007/s00262-021-02895-7 PMID: 33666760
  91. Nishio, N.; Dotti, G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. OncoImmunology, 2015, 4(2), e988098. doi: 10.4161/21505594.2014.988098 PMID: 25949885
  92. Zhang, Z.; Wang, T.; Wang, X.; Zhang, Y.; Song, S.; Ma, C. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies. Pharmacol. Res., 2022, 175, 106036. doi: 10.1016/j.phrs.2021.106036 PMID: 34920118
  93. McGrath, K.; Dotti, G. Combining oncolytic viruses with chimeric antigen receptor T cell therapy. Hum. Gene Ther., 2021, 32(3-4), 150-157. doi: 10.1089/hum.2020.278 PMID: 33349123
  94. Wei, J.; Guo, Y.; Wang, Y.; Wu, Z.; Bo, J.; Zhang, B.; Zhu, J.; Han, W. Clinical development of CAR T cell therapy in China: 2020 update. Cell. Mol. Immunol., 2021, 18(4), 792-804. doi: 10.1038/s41423-020-00555-x PMID: 32999455
  95. Evgin, L.; Huff, A.L.; Wongthida, P.; Thompson, J.; Kottke, T.; Tonne, J.; Schuelke, M.; Ayasoufi, K.; Driscoll, C.B.; Shim, K.G.; Reynolds, P.; Monie, D.D.; Johnson, A.J.; Coffey, M.; Young, S.L.; Archer, G.; Sampson, J.; Pulido, J.; Perez, L.S.; Vile, R. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat. Commun., 2020, 11(1), 3187. doi: 10.1038/s41467-020-17011-z PMID: 32581235
  96. Chalise, L.; Kato, A.; Ohno, M.; Maeda, S.; Yamamichi, A.; Kuramitsu, S.; Shiina, S.; Takahashi, H.; Ozone, S.; Yamaguchi, J.; Kato, Y.; Rockenbach, Y.; Natsume, A.; Todo, T. Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma. Mol. Ther. Oncolytics, 2022, 26, 265-274. doi: 10.1016/j.omto.2022.07.006 PMID: 35991754
  97. Buijs, P.R.A.; Verhagen, J.H.E.; van Eijck, C.H.J.; van den Hoogen, B.G. Oncolytic viruses: From bench to bedside with a focus on safety. Hum. Vaccin. Immunother., 2015, 11(7), 1573-1584. doi: 10.1080/21645515.2015.1037058 PMID: 25996182
  98. Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther., 2007, 15(4), 651-659. doi: 10.1038/sj.mt.6300108
  99. Galanis, E. Therapeutic potential of oncolytic measles virus: promises and challenges. Clin. Pharmacol. Ther., 2010, 88(5), 620-625. doi: 10.1038/clpt.2010.211 PMID: 20881957
  100. Fang, L.; Tian, W.; Zhang, C.; Wang, X.; Li, W.; Zhang, Q.; Zhang, Y.; Zheng, J. Oncolytic adenovirus-mediated expression of CCL5 and IL12 facilitates CA9-targeting CAR-T therapy against renal cell carcinoma. Pharmacol. Res., 2023, 189, 106701. doi: 10.1016/j.phrs.2023.106701 PMID: 36796464
  101. Liu, W.; Wang, X.; Feng, X.; Yu, J.; Liu, X.; Jia, X.; Zhang, H.; Wu, H.; Wang, C.; Wu, J.; Yu, B.; Yu, X. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Lett., 2022, 535, 215661. doi: 10.1016/j.canlet.2022.215661 PMID: 35325845
  102. Samson, A.; West, E.J.; Carmichael, J.; Scott, K.J.; Turnbull, S.; Kuszlewicz, B.; Dave, R.V.; Peckham-Cooper, A.; Tidswell, E.; Kingston, J.; Johnpulle, M.; da Silva, B.; Jennings, V.A.; Bendjama, K.; Stojkowitz, N.; Lusky, M.; Prasad, K.R.; Toogood, G.J.; Auer, R.; Bell, J.; Twelves, C.J.; Harrington, K.J.; Vile, R.G.; Pandha, H.; Errington-Mais, F.; Ralph, C.; Newton, D.J.; Anthoney, A.; Melcher, A.A.; Collinson, F. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res., 2022, 10(6), 745-756. doi: 10.1158/2326-6066.CIR-21-0171 PMID: 35439304
  103. Advani, S.J.; Buckel, L.; Chen, N.G.; Scanderbeg, D.J.; Geissinger, U.; Zhang, Q.; Yu, Y.A.; Aguilar, R.J.; Mundt, A.J.; Szalay, A.A. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts. Clin. Cancer Res., 2012, 18(9), 2579-2590. doi: 10.1158/1078-0432.CCR-11-2394 PMID: 22379115
  104. Cheng, X.; Wang, W.; Xu, Q.; Harper, J.; Carroll, D.; Galinski, M.S.; Suzich, J.; Jin, H. Genetic modification of oncolytic newcastle disease virus for cancer therapy. J. Virol., 2016, 90(11), 5343-5352. doi: 10.1128/JVI.00136-16 PMID: 27009956
  105. Xu, Q.; Rangaswamy, U.S.; Wang, W.; Robbins, S.H.; Harper, J.; Jin, H.; Cheng, X. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross‐priming tumor‐specific immune responses ex vivo. Int. J. Cancer, 2020, 146(2), 531-541. doi: 10.1002/ijc.32694 PMID: 31584185
  106. Tanoue, K.; Rosewell Shaw, A.; Watanabe, N.; Porter, C.; Rana, B.; Gottschalk, S.; Brenner, M.; Suzuki, M. Armed oncolytic adenovirus–expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res., 2017, 77(8), 2040-2051. doi: 10.1158/0008-5472.CAN-16-1577 PMID: 28235763
  107. Yang, Y.; Xu, W.; Peng, D.; Wang, H.; Zhang, X.; Wang, H.; Xiao, F.; Zhu, Y.; Ji, Y.; Gulukota, K.; Helseth, D.L., Jr; Mangold, K.A.; Sullivan, M.; Kaul, K.; Wang, E.; Prabhakar, B.S.; Li, J.; Wu, X.; Wang, L.; Seth, P. An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: A novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy. Hum. Gene Ther., 2019, 30(9), 1117-1132. doi: 10.1089/hum.2019.059 PMID: 31126191
  108. Nishio, N.; Diaconu, I.; Liu, H.; Cerullo, V.; Caruana, I.; Hoyos, V.; Bouchier-Hayes, L.; Savoldo, B.; Dotti, G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res., 2014, 74(18), 5195-5205. doi: 10.1158/0008-5472.CAN-14-0697 PMID: 25060519
  109. Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; Siurala, M.; Havunen, R.; Tähtinen, S.; Hemminki, A.; June, C.H. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3(7), e99573. doi: 10.1172/jci.insight.99573 PMID: 29618658
  110. Wing, A.; Fajardo, C.A.; Posey, A.D., Jr; Shaw, C.; Da, T.; Young, R.M.; Alemany, R.; June, C.H.; Guedan, S. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol. Res., 2018, 6(5), 605-616. doi: 10.1158/2326-6066.CIR-17-0314 PMID: 29588319
  111. Park, A.K.; Fong, Y.; Kim, S.I.; Yang, J.; Murad, J.P.; Lu, J.; Jeang, B.; Chang, W.C.; Chen, N.G.; Thomas, S.H.; Forman, S.J.; Priceman, S.J. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med., 2020, 12(559), eaaz1863. doi: 10.1126/scitranslmed.aaz1863 PMID: 32878978
  112. Zhang, A.Q.; Hostetler, A.; Chen, L.E.; Mukkamala, V.; Abraham, W.; Padilla, L.T.; Wolff, A.N.; Maiorino, L.; Backlund, C.M.; Aung, A.; Melo, M.; Li, N.; Wu, S.; Irvine, D.J. Universal redirection of CAR T cells against solid tumours via membrane-inserted ligands for the CAR. Nat. Biomed. Eng., 2023, 7(9), 1113-1128. doi: 10.1038/s41551-023-01048-8 PMID: 37291434

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024