Production of liquid fuel from long-term storage wood waste by hydrothermal liquidation

Cover Page

Cite item

Full Text

Abstract

The pulp and paper industry leads to the formation of a significant amount of bark and wood waste (BWW), which is not processed in Russia, but is placed in bark dumps, which leads to a negative impact on environmental objects, incl. on the planet’s climate. This article presents an assessment of the resource potential of long-term storage bark and wood waste based on the results of physicochemical and thermal analysis. It was found that during long-term storage BWW undergoes degradation rather weakly, while the proportion of carbon in the composition of BWW remains practically unchanged (at the level of 48.4%). It has been proven that the initial BWW are characterized by high humidity (60.8% to 74.9%), low calorific value (14.56 MJ/kg per d.m.) and moderate ash content (9.8% d.m.a.). For wet biomass, hydrothermal liquefaction can be considered the most suitable conversion method, which makes it possible to obtain liquid fuels without pre-drying, since. Water in this process acts as a solvent and a source of radicals. The average yield of biofuel during hydrothermal conversion of BWW is 10%, while the use of Iron ammonium alum as catalysts provided an increase in oil yield by more than 2 times to 28.4%, the use of copper sulfate led to an increase in yield up to 16.1%. The obtained bio-oil was characterized by a high degree of saturation (atomic ratio H/C was 1.3), but the oxygen content was also high (at the level of 22% wt.). The content of sulfur and nitrogen was minimal (0.6 and 0.2%, respectively). The composition of fuels was dominated by oxygen-containing aromatic compounds of the phenol group (62%), cyclic esters (19.8%), as well as fatty acids, which account for 12.9%.

About the authors

Yulia V. Kulikova

Immanuel Kant Baltic Federal University

Author for correspondence.
Email: kulikova.pnipu@gmail.com

Candidate of Technical Sciences, Senior Researcher of the Laboratory of Microbiology and Biotechnology

Russian Federation, Kaliningrad

Nikolai I. Orlov

Immanuel Kant Baltic Federal University

Email: kulikova.pnipu@gmail.com

1st Year Master of the Direction 06.04.01 «Biology»

Russian Federation, Kaliningrad

Stanislav A. Sukhikh

Immanuel Kant Baltic Federal University

Email: stas-asp@mail.ru

Doctor of Technical Sciences, Head of the Laboratory of Microbiology and Biotechnology

Russian Federation, Kaliningrad

Olga O. Babich

Immanuel Kant Baltic Federal University

Email: olich.43@mail.ru

Doctor of Technical Sciences, Director of the REC «Industrial Biotechnologies»

Russian Federation, Kaliningrad

Vladimir N. Korotaev

Perm National Research Polytechnic University

Email: korotaev@pnipu.ru

Doctor of Technical Sciences, Dean of the Faculty of Chemical Technology, Industrial Ecology and Biotechnology, PNRPU

Russian Federation, Perm

References

  1. Maksimov, A.Yu. Izuchenie svoystv i mikrobiologicheskogo sostava kory i drevesnykh otkhodov Krasnokamskogo korootvala / A.Yu. Maksimov, Yu.G. Maksimova, A.V. Shilova, O.V. Kolesova, Dzh. Simonetti // Biotekhnolog. - 2018. - T. 4. - S. 98-112. - URL:. doi: 10.15593/2224-9400/2018.4.08
  2. Doklad Minprirody Rossii "O sostoyanii i okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2020 godu". Minprirody Rossii: Moskva, Rossiya, 2021 g., str. 245-318.
  3. Mishra, A., Ghosh, S. Bioethanol production from various lignocellulosic feedstocks by a novel "fractional hydrolysis" technique with different inorganic acids and coculture fermentation. Fuel 2019, 236, 544-553. doi: 10.1016/j.fuel.2018.09.024
  4. Yu, Z., Du, Y., Shang, X., Zheng, Y., Zhou, J. Enhancing fermentable sugar yield from cassava residue using a two-step dilute ultra-low acid pretreatment process. Ind. Crops. Prod. 2018, 124, 555-562. doi: 10.1016/j.indcrop.2018.08.029
  5. Kolesnikova, A.V. Analiz obrazovaniya i ispol'zovaniya drevesnykh otkhodov na predpriyatiyakh lesopromyshlennogo kompleksa Rossii / A.V. Kolesnikova // Aktual'nye voprosy ekonomicheskikh nauk. - 2013. - T. 33. -S. 116-120. EDN: RLMCOX
  6. Kamali, M., Garmeio, T., Costa, M.E., Capela, I. Anaerobic digestion of pulp and paper mill wastes-An overview of the developments and improvement opportunities. Chem. Eng. J. 2016, 298, 162-182. doi: 10.1016/j.cej.2016.03.119 EDN: WRZVUJ
  7. Kulikowska, D., Sindrewicz, S. Effect of barley straw and coniferous bark on humification process during sewage sludge composting. Waste Manag. 2018, 79, 207-213. doi: 10.1016/j.wasman.2018.07.042
  8. Bohacz, J.Composts and Water Extracts of Lignocellulosic Composts in the Aspect of Fertilization, Humus-Forming, Sanitary, Phytosanitary and Phytotoxicity Value Assessment. Waste Biomass Valoris. 2019, 10, 334. doi: 10.1007/s12649-018-0334-6
  9. Houfani, A.A., Andersb, N., Spiessb, A.C., Baldrianc, P., Benallaouaa, S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars-A review. Biomass Bioenerg. 2020, 134, 105481. doi: 10.1016/j.biombioe.2020.105481
  10. Yucai, H., Cui-Luan, M., Bin, Y. Pretreatment Process and Its Synergistic Effects on Enzymatic Digestion of Lignocellulosic. In Fungal Cellulolytic Enzymes, Springer: Berlin, Germany, 2018, pp.1-25. doi: 10.1007/978-981-13-0749-2_1
  11. Novozhilov, E.V., Sinelnikov, I.G., Aksenov, A.S., Chukhchin, D.G., Tyshkunova, I.V., Rozhkova, A.M., Osipov, D.O., Zorov, I.N., Sinitsyn, A.P. Biocatalytic conversion of sulfate cellulose using complex biocatalysts based on recombinant Penicillium verruculosum enzyme preparations. Catal. Ind. 2015, 15, 78-83.
  12. Rynk, R., Schwarz, M., Richard, T., Cotton, M., Halbach, T., Siebert, S.Compost feedstocks.Compost. Handb. 2022, 85, 103-157. doi: 10.1016/b978-0-323-85602-7.00005-4
  13. Hu, Y., Wang, S., Li, J., Wang, Q., He, Z., Feng, Y. Co-pyrolysis and co- hydrothermal liquefaction of seaweeds and rice husk: Comparative study towards enhanced biofuel production. J. Anal. Appl. Pyrol. 2018, 129, 162-170. doi: 10.1016/j.jaap.2017.11.016
  14. Huang, S., Liu, T., Peng, B., Geng, A. Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioproc. Biosyst. Eng. 2019, 42, 883-896. doi: 10.1007/s00449-019-02090-0
  15. Dahman, Y., Syed, K., Begum, S., Roy, P., Mohtasebi, B. Biofuels: Their characteristics and analysis. Biomass. In Biopolymer-Based Materials, and Bioenergy, Elsevier: Berlin, Germany, 2019, pp. 277-325.
  16. Basu, P. Biomass Gasification, Pyrolysis and Torrefaction, Elsevier: London, UK, 2018, pp. 49-87. EDN: AFQVPA
  17. Kulikova, Y., Sukhikh, S., Ivanova, S., Babich, O., Sliusar, N. Review of Studies on Joint Recovery of Macroalgae and Marine Debris by Hydrothermal Liquefaction. Appl. Sci. 2022, 12, 569. doi: 10.3390/app12020569 EDN: YJLLQQ
  18. Tai, L., Caprariis, B., Scarsella, M., de Filippis, P., Marra, F. Improved Quality Bio-Crude from Hydrothermal Liquefaction of Oak Wood Assisted by Zero-Valent Metals. Energy Fuels 2021, 35, 10023-10034. doi: 10.1021/acs.energyfuels.1c00889
  19. Xu, Y.H., Li, M.F. Hydrothermal liquefaction of lignocellulose for value-added products: Mechanism, parameter and production application. Bioresour. Technol. 2021, 342, 126035. doi: 10.1016/j.biortech.2021.126035 EDN: GLLYZG
  20. ASTM-D7348, Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. West Conshohocken, USA: ASTM International: 2021, pp. 1-7. doi: 10.1520/D7348-21
  21. Zhao, J., Wang, M., Saroja, S.G., Khan, I A. NMR technique and methodology in botanical health product analysis and quality control, J Pharm Biomed Anal, 2022, 207, 114376. doi: 10.1016/j.jpba.2021.114376 EDN: REQSQC
  22. Simmler, Charlotte, et al. Universal quantitative NMR analysis of complex natural samples. Current opinion in biotechnology 25 (2014): 51-59.
  23. Saito T. et al. Practical guide for accurate quantitative solution state NMR analysis, Metrologia, 2004, 41, 3. doi: 10.1088/0026-1394/41/3/015
  24. GOST R 51858-2002. Neft'. Obshchie tekhnicheskie usloviya. M.: Gosstandart Rossii, 2002, 12 s.
  25. Arturi, K. R. M. Strandgaard, R. P. Nielsen, E. G. Søgaard and M. Maschietti, Hydrothermal liquefaction of lignin in near-critical water in a new batch reactor: Influence of phenol and temperature, J. Supercrit. Fluids, 2017, 123, 28- 39. doi: 10.1016/j.supflu.2016.12.015
  26. Nayak, J., Basu, A., Dey, P. et al. Transformation of agro-biomass into vanillin through novel membrane integrated value-addition process: a state-of-art review. Biomass Conv. Bioref. 2022. doi: 10.1007/s13399-022-03283-6
  27. Helmut Fiege, Heinz-Werner Voges, Toshikazu Hamamoto, Sumio Umemura, Tadao Iwata, Hisaya Miki, Yasuhiro Fujita, Hans-Josef Buysch, Dorothea Garbe, Wilfried Paulus "Phenol Derivatives" Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi: 10.1002/14356007.a19_313
  28. Zhang, Huiyan, et al. "Catalytic Conversion of Biomass-Derived Feedstocks into Olefins and Aromatics with ZSM-5: The Hydrogen to Carbon Effective Ratio". Energy & Environmental Science, vol. 4, no. 6, 2011, p. 2297.,. doi: 10.1039/c1ee01230d
  29. Basar, I.A., Liu, H., Carrere, H., Trably, E., Eskicioglu, C. A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications. Green Chem. 2021, 23, 1404. http://. doi: 10.1039/d0gc04092d EDN: QDRYIQ

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Kulikova Y.V., Orlov N.I., Sukhikh S.A., Babich O.O., Korotaev V.N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies