Questions of the existence and uniqueness of the solution of one class of nonlinear integral equations on the whole line
- Authors: Khachatryan K.A.1,2, Petrosyan H.S.3,2
-
Affiliations:
- Yerevan State University
- Lomonosov Moscow State University
- Armenian National Agrarian University
- Issue: Vol 26, No 3 (2022)
- Pages: 446-479
- Section: Differential Equations and Mathematical Physics
- URL: https://journals.eco-vector.com/1991-8615/article/view/106733
- DOI: https://doi.org/10.14498/vsgtu1932
Cite item
Full Text
Abstract
About the authors
Khachatur A. Khachatryan
Yerevan State University;Lomonosov Moscow State University
Author for correspondence.
Email: khachatur.khachatryan@ysu.am
ORCID iD: 0000-0002-4835-943X
SPIN-code: 6783-9479
Scopus Author ID: 24461615400
http://www.mathnet.ru/person27540
D.Sc. (Phys. & Math. Sci.), Professor; Head of the Dept.; Dept. of Theory of Functions and Differential Equations1; Leading Member of the grant of the Russian Science Foundation (project no. 19–11–00223)3
1, A. Manukyan str., Yerevan, 0025, Armenia; 1, Leninskie Gory, Moscow, 119991, Russian FederationHaykanush S. Petrosyan
Armenian National Agrarian University;Lomonosov Moscow State University
Email: haykuhi25@mail.ru
ORCID iD: 0000-0002-7172-4730
Scopus Author ID: 57201727643
http://www.mathnet.ru/person85670
Cand. Phys. & Math. Sci., Associate Professor; Dept of Higher Mathematics and Physics2; Member of the grant of the Russian Science Foundation (project no. 19–11–00223)3
1, A. Manukyan str., Yerevan, 0025, Armenia; 1, Leninskie Gory, Moscow, 119991, Russian FederationReferences
- Aref’eva I. Ya. Rolling tachyon on non-BPS branes and p-adic strings, Proc. Steklov Inst. Math., 2004, vol. 245, pp. 40–47.
- Vladimirov V. S., Volovich Ya. I. Nonlinear dynamics equation in p-adic string theory, Theoret. and Math. Phys., 2004, vol. 138, no. 3, pp. 297–309. DOI: https://doi.org/10.1023/B:TAMP.0000018447.02723.29.
- Kogan M. N. Rarefied Gas Dynamics. New York, Springer Science, 1969, xi+515 pp.
- Khachatryan A. K., Khachatryan K. A. Solvability of a nonlinear model Boltzmann equation in the problem of a plane shock wave, Theoret. and Math. Phys., 2016, vol. 189, no. 2, pp. 1609–1623. EDN: XMNGQJ. DOI: https://doi.org/10.1134/S0040577916110064.
- Engibaryan N. B., Khachatryan A. Kh. Exact linearization of the sliding problem for a dilute gas in the Bhatnagar–Gross–Krook model, Theoret. and Math. Phys., 2000, vol. 125, no. 2, pp. 1589–1592. EDN: XKTKIJ. DOI: https://doi.org/10.1007/BF02551017.
- Engibaryan N. B. A nonlinear problem of radiative transfer, Astrophysics, 1966, vol. 2, no. 1, pp. 12–14. EDN: XMNFBB. DOI: https://doi.org/10.1007/BF01041941.
- Sobolev V. V. The Milne problem for an inhomogeneous atmosphere, Dokl. Akad. Nauk SSSR, 1978, vol. 239, no. 3, pp. 558–561 (In Russian).
- Arabadzhyan L. G. On an integral equation of transport theory in an inhomogeneous medium, Differ. Uravn., 1987, vol. 23, no. 9, pp. 1618–1622 (In Russian).
- Diekmann O. Thresholds and travelling waves for the geographical spread of infection, J. Math. Biology, 1978, vol. 6, no. 2, pp. 109–130. DOI: https://doi.org/10.1007/BF02450783.
- Diekmann O., Kaper H. G. On the bounded solutions of a nonlinear convolution equation, Nonlinear Analysis, Theory, Methods and Applications, 1978, vol. 2, no. 6, pp. 721–737. DOI: https://doi.org/10.1016/0362-546X(78)90015-9.
- Joukovskaya L. V. Iterative method for solving nonlinear integral equations describing rolling solutions in string theory, Theoret. and Math. Phys., 2006, vol. 146, no. 3, pp. 335–342. EDN: LKBTTT. DOI: https://doi.org/10.1007/s11232-006-0043-3.
- Vladimirov V. S. Solutions of p-adic string equations, Theoret. and Math. Phys., 2011, vol. 167, no. 2, pp. 539–546. EDN: OIBKZL. DOI: https://doi.org/10.1007/s11232-011-0040-z.
- Vladimirov V. S. The equation of the p-adic open string for the scalar tachyon field, Izv. Math., 2005, vol. 69, no. 3, pp. 487–512. EDN: LIWGVV. DOI: https://doi.org/10.1070/IM2005v069n03ABEH000536.
- Khachatryan Kh. A. On the solubility of certain classes of non-linear integral equations in p-adic string theory, Izv. Math., 2018, vol. 82, no. 2, pp. 407–427. EDN: YCIQJV. DOI: https://doi.org/10.1070/IM8580.
- Khachatryan Kh. A. Solvability of some nonlinear boundary value problems for singular integral equations of convolution type, Trans. Moscow Math. Soc., 2020, vol. 81, no. 1, pp. 1–31. EDN: TTYLNH. DOI: https://doi.org/10.1090/mosc/306.
- Khachatryan Kh. A. On the solvability of a boundary value problem in p-adic string theory, Trans. Moscow Math. Soc., 2018, pp. 101–115. EDN: DNYZMK. DOI: https://doi.org/10.1090/mosc/281.
- Arabadzhyan L. G. Solutions of certain integral equations of the Hammerstein type, J. Contemp. Math. Anal., 1997, vol. 32, no. 1, pp. 17–24.
- Khachatryan A. Kh., Khachatryan Kh. A. On solvability of one class of Hammerstein non-linear integral equations, Bul. Acad. Ştiințe Repub. Mold. Mat., 2010, no. 2, pp. 67–83.
- Khachatryan Kh. A. On a class of integral equations of Urysohn type with strong non-linearity, Izv. Math., 2012, vol. 76, no. 1, pp. 163–189. EDN: PGUBLV. DOI: https://doi.org/10.1070/IM2012v076n01ABEH002579.
- Khachatryan K. A., Petrosyan H. S. On the solvability of a class of nonlinear Hammerstein—Stieltjes integral equations on the whole line, Proc. Steklov Inst. Math., 2020, vol. 308, pp. 238–249. EDN: TXFHWH. DOI: https://doi.org/10.1134/S0081543820010198.
- Khachatryan Kh. A., Petrosyan H. S. One parameter families of positive solution of some classes of convolution type nonlinear integral equations, J. Math. Sci., 2018, vol. 231, no. 2, pp. 153–167. DOI: https://doi.org/10.1007/s10958-018-3812-2.
- Kolmogorov A. N., Fomin S. V. Elementy teorii funktsii i funktsional’nogo analiza [Elements of the Theory of Functions and Functional Analysis]. Moscow, Nauka, 1981, 542 pp. (In Russian)
- Khachatryan A. Kh., Khachatryan Kh. A., Petrosyan H. S. Asymptotic behavior of a solution for one class of nonlinear integro-differential equations in the income distribution problem, Trudy Inst. Mat. Mekh. UrO RAN, 2021, vol. 27, no. 1, pp. 188–206 (In Russian). EDN: GOJJTE. DOI: https://doi.org/10.21538/0134-4889-2021-27-1-188-206.
Supplementary files
There are no supplementary files to display.
