Gadolin's problem on the assembly of a two-layer shaft by a shrink fit with a test of the connection for separation

Cover Page


Cite item

Full Text

Abstract

The connection strength in the interference fit assembly of a two-layer shaft produced by the shrink fit operation is studied. The materials of the assembly parts are considered to be ideal elastoplastic, with yield stregth that are significantly depended on temperature. In the calculations, the conditions of plane deformed states are taken into account. Pull tests are performed by rotating the assembly around its axis, when pulling forces are generated in the form of centrifugal forces of inertia. It is shown that with an increase of the rotation speed, the tightness in the assemblies is decreased. Limitations of the possible angular speed are calculated under the assembly tightness disappearing.

About the authors

Anatoly A. Burenin

Institute of Metallurgy and Mechanical Engineering Far-Eastern Branch of RAS,
Khabarovsk Federal Research Center of the Far Eastern Branch of RAS

Email: burenin@iacp.dvo.ru
ORCID iD: 0000-0003-4502-9547
SPIN-code: 3437-8349
Scopus Author ID: 7005536493
ResearcherId: ABC-3915-2020
http://www.mathnet.ru/person53145

Dr. Phys. & Math. Sci., Corresponding member of RAS; Chief Researcher; Lab. of the Problems of Creation and Processing of Materials and Products

1, Metallurgov str., Komsomolsk-on-Amur, 681005, Russian Federation

Anastasia V. Tkacheva

Institute of Metallurgy and Mechanical Engineering Far-Eastern Branch of RAS,
Khabarovsk Federal Research Center of the Far Eastern Branch of RAS

Author for correspondence.
Email: 4nansi4@mail.ru
ORCID iD: 0000-0003-1795-0021
SPIN-code: 8099-0196
Scopus Author ID: 23053246100
ResearcherId: ABA-9770-2020
http://www.mathnet.ru/person81261

Cand. Phys. & Math. Sci.; Senior Researcher; Lab. of the Problems of Creation and Processing of Materials and Products

1, Metallurgov str., Komsomolsk-on-Amur, 681005, Russian Federation

Sergey Viktorovich Firsov

Institute of Metallurgy and Mechanical Engineering Far-Eastern Branch of RAS,
Khabarovsk Federal Research Center of the Far Eastern Branch of RAS

Email: firsov.s.new@yandex.ru
ORCID iD: 0000-0001-7446-6231
SPIN-code: 8267-2329
Scopus Author ID: 56976208300
ResearcherId: D-1966-2018
http://www.mathnet.ru/person141592

Junior Researcher; Lab. of the Problems of Creation and Processing of Materials and Products

1, Metallurgov str., Komsomolsk-on-Amur, 681005, Russian Federation

References

  1. Berniker E. I. Posadka s natiagom v mashinostroenii [Interference Fit in Mechanical Engineering]. Moscow, Leningrad, Mashinostoenie, 1966, 168 pp. (In Russian)
  2. Gadolin A. B. The theory of gun barrels fastened with hoops, Artill. Zhurn., 1861, no. 12, pp. 1033–1071 (In Russian).
  3. Boley B. A., Weiner J. H. Theory of Thermal Stresses, Dover Civil and Mechanical Engineering. New York, John Wiley & Sons, 1960, xv+586 pp.
  4. Parkus H. Instationäre Wärmespannungen. Wien, Springer, 1959, v+166 pp. (In German)
  5. Mack W. Thermal assembly of on elastic-plastic hub a solid shaft, Arch. Appl. Mech., 1993, vol. 63, pp. 42–50. DOI: https://doi.org/10.1007/BF00787908.
  6. Bengeri M., Mack W. The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit, Acta Mech., 1994, vol. 103, pp. 243–257. DOI: https://doi.org/10.1007/BF01180229.
  7. Kovács Á. Residual stresses in thermally loaded shrink fits, Period. Polytech., Mech. Eng., 1996, vol. 40, no. 2, pp. 103–112.
  8. Dats E. P., Petrov M. R., Tkacheva A. V. Piecewise linear plastic potentials within the framework of the theory of the thermal stresses concerning to shrink fit, Vestn. Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2015, vol. 4(26), pp. 163–179 (In Russian). EDN: VNXOWL.
  9. Burenin A. A., Tkacheva A. V., Shcherbatyuk G. A. Calculation of the unsteady thermal stresses in elastoplastic solids, J. Appl. Mech. Tech. Phys., 2018, vol. 59, no. 7, pp. 1197–1210. EDN: LAVRJL. DOI: https://doi.org/10.1134/S0021894418070040.
  10. Burenin A. A., Kaig M., Tkacheva A. V. To the calculation of plane stressed states of the theory of unsteady temperature stresses in elastoplastic bodies, Dal’nevost. Mat. Zh., 2018, vol. 18, no. 2, pp. 131–146 (In Russian). EDN: YUNRFR.
  11. Bland D. R. Elastoplastic thick-walled tubes of work-hardening material subject to internal and external pressures and to temperature gradients, J. Mech. Phys. Solids, 1956, vol. 4, no. 4, pp. 209–229. DOI: https://doi.org/10.1016/0022-5096(56)90030-8.
  12. Aleksandrov S. E., Lyamina E. A., Novozhilova O. V. The influence of the relationship between yield strength and temperature on the stress state in a thin hollow disk, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 3, pp. 214–218. EDN: RNUNVP. DOI: https://doi.org/10.3103/S1052618813020027.
  13. Aleksandrov S. E., Lomakin E. V., Dzeng I. R. Solution of the thermoelastoplastic problem for a thin disk of plastically compressible material subjected to thermal loading, Dokl. Phys., 2012, vol. 57, no. 3, pp. 136–139. EDN: PDRTVT. DOI: https://doi.org/10.1134/S1028335812030081.
  14. Bukhalov V. I., Popov A. L., Chelyubeev D. A. Gadolin’s theory in elastoplastic formulation, Mech. Solids, 2019, vol. 54, no. 2, pp. 356–363. EDN: NGYUUL. DOI: https://doi.org/10.3103/S0025654419030051.
  15. Dats E. P., Murashkin E. V., Tkacheva A. V., Shcherbatyuk G. A. Thermal stresses in an elastoplastic tube depending on the choice of Yield conditions, Mech. Solids, 2018, vol. 53, no. 1, pp. 23–32. EDN: YBOIYP. DOI: https://doi.org/10.3103/S002565441801003X.
  16. Burenin A. A., Tkacheva A. V. Assembly of a two-layered metal pipe by using shrink fit, Mech. Solids, 2019, vol. 54, no. 4, pp. 559–569. EDN: BSSTLA. DOI: https://doi.org/10.3103/S0025654419040095.
  17. Dats E. P., Tkacheva A. V. Technological thermal stresses in the shrink fitting of cylindrical bodies with consideration of plastic flows, J. Appl. Mech. Tech. Phys., 2016, vol. 57, no. 3, pp. 569–576. EDN: WVUNSF. DOI: https://doi.org/10.1134/S0021894416030214.
  18. Burenin A. A., Matveenko V. P., Tkacheva A. V. Temperature stresses in the process of assembling a two-layer shaft by shrink fitting, Uch. Zap. KnAGTU, 2018, vol. 1, no. 3(35), pp. 31–41 (In Russian). EDN: YLXXCH.
  19. Burenin A. A., Tkacheva A. V. Evolution of temperature stresses in the Gadolin problem of assembling a two-layer elastoplastic pipe, PNRPU Mechanics Bulletin, 2020, no. 3, pp. 20–31 (In Russian). EDN: HMUHTT. DOI: https://doi.org/10.15593/perm.mech/2020.3.03.
  20. Burenin A. A., Tkacheva A. V. Piecewise linear plastic potentials as a tool for calculating plane transient temperature stresses, Mech. Solids, 2020, vol. 55, no. 6, pp. 791–799. EDN: EMMOEA. DOI: https://doi.org/10.3103/S0025654420060059.
  21. Sackfield A., Barber J. R., Hills D. A., Truman C. E. A shrink-fit shaft subject to torsion, Eur. J. Mech. A Solids, 2002, vol. 21, no. 1, pp. 73–84. DOI: https://doi.org/10.1016/S0997-7538(01)01197-4.
  22. Antoni N. Contact separation and failure analysis of a rotating thermo-elastoplastic shrink-fit assembly, Appl. Math. Modelling, 2013, vol. 37, no. 4, pp. 2352–2363. DOI: https://doi.org/10.1016/j.apm.2012.05.018.
  23. Arslan E., Mack W. Shrink fit with solid inclusion and functionally graded hub, Compos. Struct., 2015, vol. 121, pp. 217–224. DOI: https://doi.org/10.1016/J.COMPSTRUCT.2014.10.034.
  24. Lopes J. P., Hills D. A., Paynter R. J. H. The axisymmetric shrink fit problem subjected to axial force, Eur. J. Mech. A Solids, 2018, vol. 70, pp. 172–180. DOI: https://doi.org/10.1016/J.EUROMECHSOL.2018.02.007.
  25. Gaul L., Schmidt A. Finite element simulation and experiments on motor damping assembled disk shrink fits, Mech. Syst. Signal Process., 2019, vol. 127, pp. 412–422. DOI: https://doi.org/10.1016/J.YMSSP.2018.11.021.
  26. Burenin A. A., Tkacheva A. V. Axial rotation as a cause of loss of interference in a shrink fitted split disc assembly, Vestn. Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost., 2021, no. 3(49), pp. 19–32 (In Russian). EDN: NUYZPS. DOI: https://doi.org/10.37972/chgpu.2021.49.3.003.
  27. Begun A. S., Burenin A. A., Kovtanyuk L. V., Prokudin A. N. Irreversible deformation of a rotating disk having angular acceleration, Acta Mech., 2021, vol. 232, no. 5, pp. 1917–1931. EDN: UPPSFS. DOI: https://doi.org/10.1007/S00707-021-02942-5.
  28. Eraslan A. N., Akis T. On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems, Acta Mech., 2006, vol. 181, no. 1–2, pp. 43–63. DOI: https://doi.org/10.1007/S00707-005-0276-5.
  29. Prokudin A. N. Exact elastoplastic analysis of a rotating cylinder with a rigid inclusion under mechanical loading and unloading, ZAMM, 2020, vol. 100, no. 3, e201900213. EDN: SYSSIM. DOI: https://doi.org/10.1002/zamm.201900213.
  30. Prokudin A. N., Burenin A. A. Elastoplastic analysis of a rotating solid shaft made of linear hardening material, Mech. Solids, 2021, vol. 56, no. 7, pp. 1243–1258. EDN: UDGKGQ. DOI: https://doi.org/10.3103/S0025654421070207.
  31. Burenin A. A., Kovtanyuk L. V. Bol’shie neobratimye deformatsii i uprugoe posledeistvie [Large Irreversible Deformations and Elastic Aftereffect]. Vladivostok, Dal’nauka, 2013, 312 pp. (In Russian)
  32. Bykovtsev G. I., Ivlev D. D. Teoriia plastichnosti [Theory of Plasticity]. Vladivostok, Dal’nauka, 1998, 528 pp. (In Russian)
  33. Ishlinsky A. Yu., Ivlev D. D. Matematicheskaia teoriia plastichnosti [Mathematical Theory of Plasticity]. Moscow, Fizmatlit, 2001, 704 pp. (In Russian). EDN: TQYAQT.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies