Boundary value problems for Sobolev type equations of fractional order with memory effect

Cover Page


Cite item

Full Text

Abstract

Boundary value problems are studied for a one-dimensional Sobolev type integro-differential equation with boundary conditions of the first and third kind with two fractional differentiation operators α and β of different orders. Difference schemes of the order of approximation O(h2+τ2) for α=β and O(h2+τ2max{α,β}) are constructed for α≠β. Using the method of energy inequalities, a priori estimates are obtained in the differential and difference interpretations, from which the existence, uniqueness, stability, and convergence of the solution of the difference problem to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme follow. Numerical experiments were carried out to illustrate the results obtained in the paper.

About the authors

Murat Kh. Beshtokov

Institute of Applied Mathematics and Automation of Kabardin-Balkar Scientific Centre of RAS

Author for correspondence.
Email: beshtokov-murat@yandex.ru
ORCID iD: 0000-0003-2968-9211
SPIN-code: 9301-8847
Scopus Author ID: 57217958139
ResearcherId: L-8961-2017
https://www.mathnet.ru/person52345

Cand. Phys. & Math. Sci., Associate Professor; Leading Researcher; Dept. of Computational Methods

Russian Federation, 360000, Nal'chik, Shortanova st., 89 a

References

  1. Vragov V. N. Kraevye zadachi dlia neklassicheskikh uravnenii matematicheskoi fiziki [Boundary Value Problems for Nonclassical Equations in Mathematical Physics]. Novosibirsk, Novosibirsk State Univ., 1983, 84 pp. (In Russian)
  2. Ting T. W. Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 1969, vol. 21, no. 3, pp. 440–453. DOI: https://doi.org/10.2969/jmsj/02130440.
  3. Favini A., Yagi A. Degenerate Differential Equations in Banach Spaces. New York, Marcel Dekker, 1999, 336 pp. DOI: https://doi.org/10.1201/9781482276022.
  4. Sveshnikov A. G., Al’shin A. B., Korpusov M. O., Pletner Yu. D. Lineinye i nelineinye uravneniia sobolevskogo tipa [Linear and Nonlinear Equations of the Sobolev Type]. Moscow, Fizmatlit, 2007, 736 pp. (In Russian)
  5. Demidenko G.V., Uspenskii S.V. Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative. Boca Raton, CRC Press, 2003, 632 pp. DOI: https://doi.org/10.1201/9780203911433.
  6. Lions J. L. Quelques méthodes de résolution des problèmes aux limites non linéaires [Some Methods for Solving Nonlinear Boundary Value Problems], Etudes mathematiques. Paris, Gauthier-Villars, 1969, xx+554 pp. (In French)
  7. Petrovsky I. G. Lektsii po teorii obyknovennykh differentsial’nykh uravnenii [Lectures on the Theory of Ordinary Differential Equations]. Moscow, Moscow Univ. Press, 1984, 296 pp. (In Russian). EDN: QJLPYJ.
  8. Showalter R. E. The Sobolev equations I, Appl. Anal., 1975, vol. 5, no. 1, pp. 15–22. DOI: https://doi.org/10.1080/00036817508839103.
  9. Showalter R. E. The Sobolev equations II, Appl. Anal., 1975, vol. 5, no. 2, pp. 81–99.DOI: https://doi.org/10.1080/00036817508839111.
  10. Barenblatt G. I., Zheltov Yu. P., Kochina I. N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], J. Appl. Math. Mech., 1960, vol. 24, no. 5, pp. 1286–1303. EDN: VSOXSF. DOI: https://doi.org/10.1016/0021-8928(60)90107-6.
  11. Hallaire M. Le potentiel efficace de l’eau dans le sol en régime de dessèchement, C. R. Acad. Sci., Paris, 1962, vol. 254, pp. 2047–2049.
  12. Hallaire M. On a theory of moisture-transfer, Inst. Rech. Agronom., 1964, vol. 3, pp. 60–72.
  13. Chudnovsky A. F. Teplofizika pochv [Soil Thermal Physics]. Moscow, Nauka, 1976, 353 pp. EDN: RHLSCT.
  14. Chen P. J., Gurtin M. E. On a theory of heat conduction involving two temperatures, J. Appl. Math. Phys. (ZAMP), 1968, vol. 19, no. 4, pp. 614–627. DOI: https://doi.org/10.1007/BF01594969.
  15. Bedanokova S. Yu. The equation of soil moisture movement and mathematical model of moisture content of the soil layer based on the Hallaire’s equation, Vestn. Adygeisk. Gos. Univ. Ser. 4. Estestv.-Matemat. Tekhn. Nauki, 2007, vol. 4, pp. 68–71 (In Russian). EDN: KBXDEN.
  16. Alikhanov A. A. A priori estimates for solutions of boundary value problems for fractionalorder equations, Diff. Equat., 2010, vol. 46, no. 5, pp. 660–666. EDN: MXDCPJ. DOI: https://doi.org/10.1134/S0012266110050058.
  17. Alikhanov A. A. A new difference scheme for the time fractional diffusion equation, J. Comp. Phys., 2015, vol. 280, pp. 424–438. EDN: UEGJJB. DOI: https://doi.org/10.1016/j.jcp.2014.09.031.
  18. Beshtokov M. Kh. Stability and convergence of difference schemes approximating boundary value problems for loaded Sobolev-type fractional differential equations, Diff. Equat., 2021, vol. 57, no. 12, pp. 1685–1701. EDN: NMCDYV. DOI: https://doi.org/10.1134/S0012266121120132.
  19. Beshtokov M. Kh. The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 158, 012019. EDN: YVCYFN. DOI: https://doi.org/10.1088/1757-899X/158/1/012019.
  20. Beshtokov M. Kh. Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms, Diff. Equat., 2018, vol. 54, no. 2, pp. 250–267. EDN: UXTRVT. DOI: https://doi.org/10.1134/S0012266118020118.
  21. Beshtokov M. Kh., Vogahova V. A. Nonlocal boundary value problems for a fractional-order convection-diffusion equation, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2019, vol. 29, no. 4, pp. 459–482 (In Russian). EDN: DKSEVD. DOI: https://doi.org/10.20537/vm190401.
  22. Beshtokov M. Kh. Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 4(33), pp. 15–24 (In Russian). EDN: RVARQN. DOI: https://doi.org/10.14498/vsgtu1238.
  23. Caputo M. Linear models of dissipation whose $Q$ is almost frequency independent—II, Geophys. J. Intern., 1967, vol. 13, no. 5, pp. 529–539. DOI: https://doi.org/10.1111/j.1365-246X.1967.tb02303.x.
  24. Gerasimov A. N. Generalization of linear deformation laws and their application to problems of internal friction, Appl. Math. Mech., 1948, vol. 12, pp. 529–539.
  25. Ladyzhenskaya O. A. The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, vol. 49. New York, Springer-Verlag, 1985, xxx+322 pp. DOI: https://doi.org/10.1007/978-1-4757-4317-3.
  26. Samarskii A. A. Teoriia raznostnykh skhem [Theory of Difference Schemes]. Moscow, Nauka, 1983, 616 pp. (In Russian)
  27. Samarskii A. A., Gulin A. B. Ustoichivost’ raznostnykh skhem [Stability of Difference Schemes]. Moscow, Nauka, 1973, 416 pp. (In Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies