Mathematical prediction of the probability of particle collisions during detonation spraying

Cover Page


Cite item

Full Text

Abstract

The paper presents methods of mathematical prediction of the probability of collision of particles of dissimilar materials in the process of detonation spraying of composite coatings. As a consequence of different properties of initial powder materials (mass, aerodynamic resistance), quality indicators of composite coatings are determined not only with the motion parameters of the particles but with their mutual position in the flow of the detonation products. In the case of the use of reactive components, the interaction of molten particles in the flow can lead to chemical reactions, formation of new materials on the substrate, heterogeneous structure of the coating, and deterioration of its strength and adhesive properties. A preliminary forecast of the probability of collision of particles before contact with the surface of the product makes it possible to conclude before conducting full-scale tests that high-quality coating indicators have been obtained.

About the authors

Sergey Yu. Ganigin

Samara State Technical University

Email: ganigin.s.yu@yandex.ru
ORCID iD: 0000-0001-5778-6516
SPIN-code: 5725-6961
Scopus Author ID: 56674530800
ResearcherId: J-8539-2014
http://www.mathnet.ru/person38985

Dr. Techn. Sci., Associate Professor; Dean; Faculty of Engineering and Technology

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Maria S. Grechukhina

Samara State Technical University

Author for correspondence.
Email: mariya_grechukhina@mail.ru
ORCID iD: 0000-0001-7797-3802
SPIN-code: 6179-8126
Scopus Author ID: 57214888777
http://www.mathnet.ru/person191499

Cand. Techn. Sci.; Senior Researcher; Lab. of Digital Doubles of Materials and Technological Processes of their Processing

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Alexander S. Nechaev

Samara State Technical University

Email: nechaev-as@mail.ru
ORCID iD: 0000-0002-0939-8292
SPIN-code: 4564-7570
http://www.mathnet.ru/person53600

Cand. Techn. Sci.; Associate Professor; Dept. of Radio Engineering Devices

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Andrey Yu. Murzin

Samara State Technical University

Email: ttxb@inbox.ru
ORCID iD: 0000-0002-6737-036X
SPIN-code: 2014-2813
Scopus Author ID: 56462370600
ResearcherId: E-3954-2014
http://www.mathnet.ru/person191501

Cand. Techn. Sci.; Associate Professor; Dept. of Solid Chemical Technology

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Valeria A. Vorontsova

Samara State Technical University

Email: vorontsova.va@mail.ru
ORCID iD: 0000-0002-8759-1805
http://www.mathnet.ru/person191502

Junior Researcher; Lab. of Digital Doubles of Materials and Technological Processes of their Processing

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

References

  1. Haridasan V. P., Velayudham A., Krishnamurthy R. Response surface modeling and parameter optimization of detonation spraying with enhanced coating performance, Materials Today: Proceedings, 2021, vol. 46, no. 9, pp. 3474–3481. DOI: https://doi.org/10.1016/j.matpr.2020.11.867.
  2. Ulianitsky V. Yu., Shtertser A. A., Batraev I. S., Rybin D. K. Fabrication of layered ceramic-metal composites by detonation spraying, Ceramics Intern., 2020, vol. 46, no. 17, pp. 27903–27908. EDN: PAVTPA. DOI: https://doi.org/10.1016/j.ceramint.2020.07.225.
  3. Ulianitsky V. Yu., Batraev I. S., Shtertser A. A., Dudina D. V., Bulina N. V., Smurov I. Detonation spraying behavior of refractory metals: Case studies for Mo and Ta-based powders, Adv. Powder Technol., 2018, vol. 29, no. 8, pp. 1859–1864. EDN: YCBFVR. DOI: https://doi.org/10.1016/j.apt.2018.04.023.
  4. Rybin D. K., Batraev I. S., Dudina D. V., Ukhina A. V., Ulianitsky V. Yu. Deposition of tungsten coatings by detonation spraying, Surf. Coat. Technol., 2021, vol. 409, 126943. EDN: EUTKJS. DOI: https://doi.org/10.1016/j.surfcoat.2021.126943.
  5. Shtertsera A. A., Rybin D. K., Ulianitsky V. Yu., Park W., Datekyu M., Wada T., Kato H. Characterization of nanoscale detonation carbon produced in a pulse gas-detonation device, Diamond Relat. Mater., 2020, vol. 101, 107553. EDN: HRUGOT. DOI: https://doi.org/10.1016/j.diamond.2019.107553.
  6. Cui S., Zhai H., Li W., Fan X., Li X., Ning W., Xiong D. Microstructure and tribological properties of Fe-based amorphous coating prepared by detonation spray, J. Non-Cryst. Solids, 2021, vol. 556, 120564. DOI: https://doi.org/10.1016/j.jnoncrysol.2020.120564.
  7. Ulianitsky V. Yu., Rybin D. K., Ukhina A. V., Bokhonov B. B., Dudina D. V., Samodurova M. N., Trofimov E. A. Structure and composition of Fe-Co-Ni and Fe-Co-Ni-Cu coatings obtained by detonation spraying of powder mixtures, Materials Letters, 2021, vol. 290, 129498. EDN: SINNEA. DOI: https://doi.org/10.1016/j.matlet.2021.129498.
  8. Ulianitsky V. Yu., Dudina D. V., Batraev I. S., Kovalenko A. I., Bulina N. V., Bokhonov B. B. Detonation spraying of titanium and formation of coatings with spraying atmosphere-dependent phase composition, Surf. Coat. Technol., 2015, vol. 261, pp. 174–180. EDN: UEKMPD. DOI: https://doi.org/10.1016/j.surfcoat.2014.11.038.
  9. Dudina D. V., Korchagin M. A., Zlobin S. B., Ulianitsky V. Yu., Lomovsky O. I., Bulina N. V., Bataev I. A., Bataev V. A. Compositional variations in the coatings formed by detonation spraying of Ti3Al at different O2/C2H2 ratios, Intermetallics, 2012, vol. 29, pp. 140–146. EDN: RGCVLH. DOI: https://doi.org/10.1016/j.intermet.2012.05.010.
  10. Haridasan V. P., Velayudham A., Krishnamurthy R. Response surface modeling and parameter optimization of detonation spraying with enhanced coating performance, Materials Today: Proceedings, 2021, vol. 46, no. 9, pp. 3474–3481. DOI: https://doi.org/10.1016/j.matpr.2020.11.867.
  11. Batraev I. S., Ulianitsky V. Yu., Dudina D. V. Detonation spraying of copper: Theoretical analysis and experimental studies, Materials Today: Proceedings, 2017, vol. 4, no. 11, pp. 11346–11350. EDN: XOISOM. DOI: https://doi.org/10.1016/j.matpr.2017.09.006.
  12. Ulianitsky V., Batraev I., Dudina D., Smurov I. Enhancing the properties of WC/Co detonation coatings using two-component fuels, Surf. Coat. Technol., 2017, vol. 318, pp. 244–249. EDN: XNHHSJ. DOI: https://doi.org/10.1016/j.surfcoat.2016.08.008.
  13. Dudina D. V., Pribytkov G. A., Krinitcyn M. G., Korchagin M. A., Bulina N. V., Bokhonov B. B., Batraev I. S., Rybin D. K., Ulianitsky V. Yu. Detonation spraying behavior of TiC${}_x$-Ti powders and the role of reactive processes in the coating formation, Ceramics Intern., 2016, vol. 42, no. 1, part A, pp. 690–696. EDN: XXBCUX. DOI: https://doi.org/10.1016/j.ceramint.2015.08.166.
  14. Dudina D. V., Batraev I. S., Ulianitsky V. Yu., Korchagin M. A. Possibilities of the computer-controlled detonation spraying method: A chemistry viewpoint, Ceramics Intern., 2014, vol. 40, no. 2, pp. 3253–3260. EDN: SKKGHD. DOI: https://doi.org/10.1016/j.ceramint.2013.09.111.
  15. Dudina D. V., Zlobin S. B., Bulina N. V., Bychkov A. L., Korolyuk V. N., Ulianitsky V. Yu., Lomovsky O. I. Detonation spraying of TiO2–2.5 vol.% Ag powders in a reducing atmosphere, J. Europ. Ceramic Soc., 2012, vol. 32, no. 4, pp. 815–821. EDN: PDGOPL. DOI: https://doi.org/10.1016/j.jeurceramsoc.2011.10.022.
  16. Shtertser A., Muders C., Veselov S., Zlobin S., Ulianitsky V., Jiang X., Bataev V. Computer controlled detonation spraying of WC/Co coatings containing MoS2 solid lubricant, Surf. Coat. Technol., 2012, vol. 206, no. 23, pp. 4763–4770. EDN: RGCAMH. DOI: https://doi.org/10.1016/j.surfcoat.2012.03.043.
  17. Ulianitsky V. Yu., Dudina D. V., Batraev I. S., Rybin D. K., Bulina N. V., Ukhina A. V., Bokhonov B. B. The influence of the in-situ formed and added carbon on the formation of metastable Ni-based phases during detonation spraying, Materials Letters, 2016, vol. 181, pp. 127–131. EDN: XFJUMP. DOI: https://doi.org/10.1016/j.matlet.2016.06.022.
  18. Liao W.-B., Wu Zh.-X., Lu W., He M., Wang T., Guo Z., Huang J. Microstructures and mechanical properties of CoCrFeNiMn high-entropy alloy coatings by detonation spraying, Intermetallics, 2021, vol. 132, 107138. DOI: https://doi.org/10.1016/j.intermet.2021.107138.
  19. Shtertser A. A., Batraev I. S., Ulianitsky V. Yu., Kuchumova I. D., Bulina N. V., Ukhina A. V., Bokhonov B. B., Dudina D. V., Trinh Ph. V., Phuong D. D. Detonation spraying of Ti-Cu mixtures in different atmospheres: Carbon, nitrogen and oxygen uptake by the powders, Surf. Interf., 2020, vol. 21, 100676. EDN: JEFFAG. DOI: https://doi.org/10.1016/j.surfin.2020.100676.
  20. Patent RU 2744805 C1, A method of applying a reactive composite coating based on Ni-Al / M. V. Nenashev, D. A. Demoretsky, S. Yu. Ganigin, I. V. Nechaev, I. A. Kuznetsov, A. A. Novikov, V. L. Simogin, A. Yu. Murzin, A. G. Popov, A. T. Nurmukhametov, N. S. Aldebenev, M. S. Grechukhina, I. R. Toneev; publ. 15 Mar 2021, 2021 (In Russian). http://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=2744805. EDN: XVKCSP.
  21. Nechaeva I., Nechaev A. Method of assessing the sensitivity of the dust-air mixture to thermal effects caused by electric discharge, In: 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP), 2019, pp. 553–557. EDN: DMELHU. DOI: https://doi.org/10.1109/CSCMP45713.2019.8976612.
  22. Lakshmi D. V., Babu P. S., Krishna L. R., Vijay R., Rao D. S., Padmanabham G. Corrosion and erosion behavior of iron aluminide (FeAl(Cr)) coating deposited by detonation spray technique, Adv. Powder Technol., vol. 32, no. 7, pp. 2192–2201. DOI: https://doi.org/10.1016/j.apt.2021.04.032.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The schematic image of the trunk section

Download (95KB)
3. Figure 2. Schematic representation of the particle length distribution in the trunk channel

Download (107KB)
4. Figure 3. The dependence of the heating process of particles with diameters of 40 μm (1) and 20 μm (2) on the time during detonation spraying

Download (781KB)

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies