Construction of Mikusinski operational calculus based on the convolution algebra of distributions. Methods for solving mathematical physics problems

Abstract


A new justification is given for the Mikusinsky operator calculus entirely based on the convolution algebra of generalized functions $D'_+$ and $D'_-$, as applied to the solution of linear partial differential equations with constant coefficients in the region $(x;t)\in \mathbb R (\mathbb R_{+})\times \mathbb R_{+}$. The mathematical apparatus used is based on the current state of the theory of generalized functions and its one of the main differences from the theory of Mikusinsky is that the resulting images are analytical functions of a complex variable. This allows us to legitimate the Laplace transform in the algebra $D'_{+} $ $( x\in \mathbb R_{+} )$, and apply the algebra to the region of negative values of the argument with the use of algebra $D'_{-}$. On classical examples of second-order equations of hyperbolic and parabolic type, in the case $x\in \mathbb R$, questions of the definition of fundamental solutions and the Cauchy problem are stated, and on the segment and the half-line $x\in \mathbb R_{+}$, non-stationary problems in the proper sense are considered. We derive general formulas for the Cauchy problem, as well as circuit of fundamental solutions definition by operator method. When considering non-stationary problems we introduce the compact proof of Duhamel theorem and derive the formulas which allow optimizing obtaining of solutions, including problems with discontinuous initial conditions. Examples of using series of convolution operators of generalized functions are given to find the originals. The proposed approach is compared with classical operational calculus based on the Laplace transform, and the theory of Mikusinsky, having the same ratios of the original image on the positive half-axis for normal functions allows us to consider the equations posed on the whole axis, to facilitate the obtaining and presentation of solutions. These examples illustrate the possibilities and give an assessment of the efficiency of the use of operator calculus.

Full Text

Введение. Операторное, или операционное, исчисление достаточно давно и успешно применяется в математической физике, главным образом при решении нестационарных задач. Исторически первой практической реализацией этого исчисления является символический метод Хевисайда, который ввел правила обращения с операторами дифференцирования и интегрирования, рассматриваемыми как алгебраические величины [1]. К удобству такого подхода следует отнести то, что формальные вычисления можно отделить от математического содержания задачи. Строгое обоснование метода Хевисайда было дано с помощью интегрального преобразования Лапласа на основании теории функций комплексного переменного [1-3]. Подход к операционному исчислению как приложению этой теории - классическое операционное исчисление доминирует в современной учебной и научно-технической литературе, например [4-6]. Введение обобщенных функций существенно расширяет возможности операционного исчисления. Наиболее распространенной является предложенная Л. Шварцем и Ж.-Л. Лионсом теория преобразования Лапласа для обобщенных функций медленного роста, заданных на положительной полуоси и об′ ⊂

About the authors

Iosif L Kogan

Russian State Agrarian University - Moscow Agricultural Academy after K. A. Timiryazev

Email: ik_@list.ru
49, Timiryazevskaya st., Moscow, 127550, Russian Federation
Cand. Techn. Sci.; Associate Professor; Dept. of Higher Mathematics

References

  1. Courant R., Hilbert D. Methods of Mathematical Physics. vol. 2: Partial Differential Equations. New York: Interscience Publ., 1962. xxii+830 pp.
  2. Doetsch G. Introduction to the Theory and Application of the Laplace Transformation. Berlin, Heidelberg: Springer-Verlag, 1974. viii+327 pp. doi: 10.1007/978-3-642-65690-3.
  3. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1987. 688 с.
  4. Федорюк М. В. Интегральные преобразования / Анализ - 1 / Итоги науки и техн. Сер. Соврем. пробл. мат. Фундам. направления, Т. 13. М.: ВИНИТИ, 1986. С. 211-253.
  5. Sharma J. N., Singh K. Partial Differential Equations for Engineers and Scientists. New Delhi: Narosa Publishing House, 2011. 354 pp.
  6. Волков И. К., Канатников А. Н. Интегральные преобразования и операционное исчисление / Математика в техническом университете. Т. 11 / ред. В. С. Зарубин, А. П. Крищенко. М.: МГТУ им. Н. Э. Баумана, 2015. 227 с.
  7. Schwartz L. Transformation de Laplace des distributions // Meddel. Lunds Univ. Mat. Sem. Suppl.-band M. Riesz, 1952. pp. 196-206 (In French).
  8. Lions J. L. Supports dans la transformation de Laplace // J. Anal. Math., 1953. vol. 2. pp. 369-380 (In French).
  9. Schwartz L. Méthodes mathématiques pour les sciences physiques. Avec le concours de Denise Huet / Enseign. des sciences. Paris: Hermann & Cie, 1961. 392 pp. (In French)
  10. Владимиров В. С. Обобщенные функции в математической физике. М.: Наука, 1979. 319 с.
  11. Владимиров В. С. Уравнения математической физики. М.: Наука, 1981. 512 с.
  12. Брычков Ю. А., Прудников А. П. Интегральные преобразования обобщенных функций. М.: Наука, 1977. 287 с.
  13. Kecs W., Teodorescu P. P. Application of the distribution theory in the mechanics. Bucuresti: Editura Academiei Republicii Socialiste Romania, 1970. 438 pp. (In Romanian)
  14. Mikusiński J. Operational calculus / Internat. Series of Monographs on Pure and Applied Mathematics. vol. 8. New York: Pergamon Press, 1959. 495 pp.
  15. Коган И. Л. Построение операторного исчисления Микусинского на основе алгебры свертки обобщенных функций. Основные положения // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2012. № 2(27). С. 44-52. doi: 10.14498/vsgtu1013.
  16. Коган И. Л. Построение операторного исчисления Микусинского на основе алгебры свертки обобщенных функций. Теоремы и начало применения // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2013. № 3(32). С. 56-68. doi: 10.14498/vsgtu1119.
  17. Hörmander L. Linear partial differential operators / Die Grundlehren der mathematischen Wissenschaften. vol. 116. Berlin, Göttingen, Heidelberg: Springer-Verlag, 1963. vii+285 pp.
  18. Гельфанд И. М., Шилов Г. Е. Обобщенные функции. Т. 1: Обобщенные функции и действия над ними. М.: Физматлит, 1959. 470 с.
  19. Korn G. A., Korn T. M. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review: Reprint with corrections of the 2nd revised and enlarged edition 1968. / Dover Civil and Mechanical Engineering. Mineola, NY: Dover Publications, 2003. xvii+1130 pp.
  20. Коган И. Л. Метод интеграла Дюамеля для обыкновенных дифференциальных уравнений с постоянными коэффициентами с точки зрения теории обобщенных функций // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2010. № 1(20). С. 37-45. doi: 10.14498/vsgtu673.

Statistics

Views

Abstract - 19

PDF (Russian) - 13

Cited-By


PlumX

Dimensions

Refbacks

  • There are currently no refbacks.

Copyright (c) 2018 Samara State Technical University

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies