Horizontal-axis wind turbine weathervane yaw differential error

Cover Page


Cite item

Full Text

Abstract

The paper deals with the problem of orientation of the traditional horizontal-axis wind turbine (HAWT) when changing the direction, strength and speed of the wind.

When the wind direction changes, the active swept area of the rotor, which is a circle when the rotation axis and the incoming air flow vector are collinear, decreases and takes the form of an ellipse. This, in turn, leads to a decrease in the electricity volume generation.

Weathervane or rumba-anemometer is a device for registering the speed and direction of wind flow. When the wind direction changes, the device transmits a corresponding signal to the Control System, which in turn generates the command to turn the HAWT rotor on the wind. However, when the wind flow is passing between the rotating blades, the direction of distorted wake is changing, causing eddy formation. As a result the device gives out the initially incorrect data about the direction and velocity of the air flow. Furthermore, when adjusting the position of the rotor (yawing), the collinearity of the rotation axis and the vector of the incoming flow is not achieved, the swept area remains mostly elliptical, and the power generated is proportionally reduced. In accordance with the relevancy of the said problem, the goal of the study was to calculate numerical values of the wake deflection angle in various modes, using the three-dimensional modeling in Ansys CFX software package. The obtained information can be used then to develop the algorithm for eliminating this error.

About the authors

Evgenii V. Solomin

South Ural State University (National Research University)

Email: solominev@susu.ru
ORCID iD: 0000-0002-4694-0490
SPIN-code: 7191-4503
Scopus Author ID: 56497029400
ResearcherId: A-2409-2014
http://www.mathnet.ru/person105233

Dr. Tech. Sci., Professor; Dept. of Power Stations, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Alexandr A. Terekhin

South Ural State University (National Research University)

Email: aleksandr.terekhin@gmail.com
ORCID iD: 0000-0002-5744-2104
SPIN-code: 6161-8358
Scopus Author ID: 26536627100
http://www.mathnet.ru/person171764

Cand. Techn. Sci., Associate Professor; Dept. of Flying Apparatus

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Andrey S. Martyanov

South Ural State University (National Research University)

Email: martianovas@susu.ru
ORCID iD: 0000-0002-9997-9989
SPIN-code: 7745-3958
Scopus Author ID: 57170580600
ResearcherId: AAU-6241-2020
http://www.mathnet.ru/person117729

Cand. Techn. Sci., Associate Professor; Dept. of Power Stations, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Anton A. Kovalyov

South Ural State University (National Research University)

Email: alpenglow305@yandex.ru
ORCID iD: 0000-0001-6952-277X
SPIN-code: 7477-6832
Scopus Author ID: 57209801438
http://www.mathnet.ru/person164305

Postgraduate Student; Dept. of Power Stations, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Denis R. Ismagilov

South Ural State University (National Research University)

Email: drismagilov@gmail.com
ORCID iD: 0000-0002-9312-295X
SPIN-code: 8488-6020
Scopus Author ID: 57226504955
http://www.mathnet.ru/person171765

Research Engineer; Aerospace Technologies Research and Educational Center

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Alexey A. Miroshnichenko

South Ural State University (National Research University)

Email: alex.miroshnichenko@mail.ru
ORCID iD: 0000-0003-4594-3806
SPIN-code: 2280-0150
Scopus Author ID: 57205376224
http://www.mathnet.ru/person171766

Postgraduate Student; Dept. of Power Stations, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Yusong Yang

South Ural State University (National Research University)

Email: 1152108936@qq.com
ORCID iD: 0000-0002-2941-5942
Scopus Author ID: 57217211823
http://www.mathnet.ru/person171767

Postgraduate Student; Dept. of Power Stations, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

Gleb N. Ryavkin

South Ural State University (National Research University)

Author for correspondence.
Email: amdx3@bk.ru
ORCID iD: 0000-0002-7637-0310
SPIN-code: 9303-6629
Scopus Author ID: 57219672086
ResearcherId: AAZ-3852-2021
http://www.mathnet.ru/person171768

Master’s Degree Student; Dept. of Power Stations, Networks and Power Supply Systems

76, Lenin pr., Chelyabinsk, 454080, Russian Federation

References

  1. Statistics — World Wind Energy Association, https://wwindea.org/information-2/information/.
  2. Solomin E., Kirpichnikova I., Amerkhanov R., Korobatov D., Lutovats M., Martyanov A. Wind-hydrogen standalone uninterrupted power supply plant for all-climate application, Int. J. Hydrogen Energy, 2019, vol. 44, no. 7, pp. 3433–3449. https://doi.org/10.1016/j.ijhydene.2018.12.001.
  3. Wan S., Cheng L., Sheng X. Effects of yaw error on wind turbine running characteristics based on the equivalent wind speed model, Energies, 2015, vol. 8, no. 7, pp. 6286–6301. https://doi.org/10.3390/en8076286.
  4. Kirpichnikova I. M., Martyanov A. S., Solomin E. V. Simulation of a generator for a windpower unit, Russ. Electr. Engin., 2013, vol. 84, no. 10, pp. 577–580. https://doi.org/10.3103/S1068371213100076.
  5. Sirotkin E. A., Martyanov A. S., Solomin E. V., Kozlov S. V. Emergency braking system for the wind turbine, In: 2016 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 2016. https://doi.org/10.1109/icieam.2016.7911451.
  6. Korobatov D. V., Sirotkin E. A., Troickiy A. O., Solomin E. V. Wind turbine power plant control, In: 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2016. https://doi.org/10.1109/Dynamics.2016.7819031.
  7. Martyanov A. S., Martyanov N. A., Anikin A. S. Comparative analysis of wind turbine control strategies, Procedia Engineering, 2015, vol. 129, pp. 607–614. https://doi.org/10.1016/j.proeng.2015.12.077.
  8. Chen F., Yang J. Fuzzy PID controller used in yaw system of wind turbine, In: 2009 3rd International Conference on Power Electronics Systems and Applications (PESA), 2009, 4 pp. https://ieeexplore.ieee.org/document/5228644.
  9. van Dijk M. T., van Wingerden, J.-W., Ashuri T., Li Y., Rotea M. A. Yaw-misalignment and its impact on wind turbine loads and wind farm power output, J. Phys.: Conf. Ser., 2016, vol. 753, 062013. https://doi.org/10.1088/1742-6596/753/6/062013.
  10. MacMahon E., Stock A., Jamieson P., Leithead B. Yaw control for 20MW offshore multi rotor system, In: European Wind Energy Association Annual Event (EWEA 2015), Paris expo Porte de Versailles, 2015. https://strathprints.strath.ac.uk/59716/.
  11. Zhang L., Yang Q. A method for yaw error alignment of wind turbine based on LiDAR, IEEE Access, 2020, vol. 8, pp. 25052–25059. https://doi.org/10.1109/ACCESS.2020.2969477.
  12. Scholbrock A., Fleming P., Wright A., Slinger C., Medley J., Harris M. Field test results from lidar measured yaw control for improved yaw alignment with the NREL controls advanced research turbine, To be presented at the AIAA Science and Technology Forum and Exposition, 2015, 9 pp. https://www.nrel.gov/docs/fy15osti/63202.pdf.
  13. Wind power plant Siemens: SWT–3.6–120, Technical documentation. https://pdf.archiexpo.com/pdf/siemens-gamesa/swt-36-120/88089-134487.html.
  14. Wilcox D. C. Turbulence Modeling for CFD. California, DCW Industries, 1998, 460 pp.
  15. Chung T. J. Computational Fluid Dynamics. London, Cambridge Univ. Press, 2010, xxii+1034 pp. https://doi.org/10.1017/CBO9780511780066.
  16. Versteeg H., Malalasekra W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. London, Prentice Hall, 2007, xiii+503 pp.
  17. Ferziger J. H., Peric M. Computational Methods for Fluid Dynamics. Berlin, Springer-Verlag, 2002, xiv+426 pp. https://doi.org/10.1007/978-3-642-56026-2.
  18. Hassid S., Poreh M. A turbulent energy dissipation model for flows with drag reduction, J. Fluids Eng., 1978, vol. 100, no. 1, pp. 107–112. https://doi.org/10.1115/1.3448580.
  19. Wolfshtein M. The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient, Int. J. Heat Mass Transfer, 1969, vol. 12, no. 3, pp. 301–318. https://doi.org/10.1016/0017-9310(69)90012-x.
  20. Troshko A. A, Hassan Y. A. A two-equation turbulence model of turbulent bubbly flows, Int. J. Multiphase Flow, 2001, vol. 27, no. 11, pp. 1965–2000. https://doi.org/10.1016/s0301-9322(01)00043-x.
  21. Yakhot V, Orszag S. A. Renormalization group analysis of turbulence. I. Basic theory, J. Sci. Comput., 1986, vol. 1, no. 1, pp. 3–51. https://doi.org/10.1007/bf01061452.
  22. Yakhot V., Orszag S. A., Thangam S., Gatski T. B., Speziale C. G. Development of turbulence models for shear flows by a double expansion technique, Phys. Fluids A, 1992, vol. 4, no. 7, pp. 1510–1520. https://doi.org/10.1063/1.858424.
  23. Menter F. R. Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 1994, vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149.
  24. Roshko A. On the development of turbulent wakes from vortex streets, Technical Report no. 1191. Washington, D.C., National Advisory Committee for Aeronautics, 1954, 25 pp. https://resolver.caltech.edu/CaltechAUTHORS:ROSnacarpt1191.
  25. Shlikhting G. Teoriia pogranichnogo sloia [Boundary Layer Theory]. Moscow, Nauka, 1974, 637 pp. (In Russian)
  26. Strelets M. Detached eddy simulation of massively separated flows, In: 39th Aerospace Sciences Meeting and Exhibit. Reno, NV, 2001. https://doi.org/10.2514/6.2001-879.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies