The non-uniaxial creep under complex loading

Cover Page


Cite item

Full Text

Abstract

Based on the model of incomplete reversibility of creep deformation, constitutive equations for the non-uniaxial stress state of metals under complex loading paths are proposed. The tensors of the viscoelastic, viscoplastic, and viscous components of the creep deformation are assumed to develop independently. The deformation kinetics is associated with the initial and deformation anisotropy. The measure of creep intensity for initially orthotropic materials is the equivalent stress introduced by Hill. In this case, the similarity of the stress and strain deviators is not required. The nature of the anisotropy of the deformation is associated with the value of the viscoplastic component of the deformation in the direction of the principal axes of the stress tensor. A superposition of the initial and deformation anisotropy is assumed. Samples made of 3KhV4SF tool steel and EI437B heat resistant alloy were tested, which are initially isotropic materials. The rheological coefficients of 3KhV4SF steel and EI437B alloy were calculated from the results of the uniaxial tension test samples at various levels of initial stresses. A comparative analysis of the forecast under complex loading according to the proposed equations with the test results was carried out.

About the authors

Evgeny K. Kichaev

Samara State Technical University

Email: mechanika01@yandex.ru
ORCID iD: 0000-0003-0577-2889
SPIN-code: 4424-3922
Scopus Author ID: 6508206523
http://www.mathnet.ru/person193756

Cand. Tech. Sci., Associate Professor; Associate Professor; Dept.of Mechanics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

Peter E. Kichaev

Samara State Technical University

Author for correspondence.
Email: kichaevp@yandex.ru
ORCID iD: 0000-0001-7321-389X
SPIN-code: 6827-8864
http://www.mathnet.ru/person39260

Cand. Phys. & Math. Sci., Associate Professor; Associate Professor; Dept. of Mechanics

Russian Federation, 443100, Samara, Molodogvardeyskaya st., 244

References

  1. Samarin Yu. P. Uravneniia sostoianiia materialov so slozhnymi reologicheskimi svoistvami [Equation of State of Materials with Complex Rheological Properties]. Kuibyshev, Kuibyshev State Univ., 1979, 84 pp. (In Russian)
  2. Radchenko V. P., Samarin Yu. P., Khrenov S. M. Determining equations for the materials in the presence of three stages of creep, Dokl. Akad. Nauk SSSR, 1986, vol. 288, no. 3, pp. 571–574 (In Russian). EDN: FZHKUQ.
  3. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004, 264 pp. (In Russian). EDN: QNATSX.
  4. Radchenko V. P., Kichaev P. E. Energeticheskaia kontseptsiia polzuchesti i vibropolzuchesti metallov [Energy Concept of Creeping and Vibrocreep of Metals]. Samara, Samara State Technical Univ., 2011, 157 pp. (In Russian). EDN: QNAGXB.
  5. Rabotnov Yu. N. Creep Problems in Structural Members. Amsterdam, London, North-Holland Publ., 1969, xiv+822 pp.
  6. Malinin N. N. Polzuchest’ v obrabotke metallov [Creep in Treated Metals]. Moscow, Mashinostroenie, 1985, 216 pp. (In Russian). EDN: XXLGDN.
  7. Lokoschenko A. M., Shesterikov S. A. et al. Zakonomernosti polzuchesti i dlitel’noi prochnosti [Regularities of Creep and Long-Term Strength], ed. S. A. Shesterikov. Moscow, Mashinostroenie, 1983, 101 pp. (In Russian)
  8. Samarin Yu. P., Kichaev E. K. Peculiarities of creep of metals in tension with reversible torsion, In: Prochnost’ materialov i elementov konstruktsii pri slozhnom napriazhennom sostoianii [Strength of Materials and Structural Elements in a Complex Stress State]. Kiev, Nauk. Dumka, 1977, pp. 224–238 (In Russian).
  9. Kichaev E. K., Fayn G. M. Creep of drill pipes from D16T alloy under conditions of ultra-deep drilling, In: Prochnost’ materialov i elementov konstruktsii pri slozhnom napriazhennom sostoianii [Strength of Materials and Structural Elements in a Complex Stress State]. Kiev, Nauk. Dumka, 1978, pp. 232–237 (In Russian).
  10. Lokoshchenko A. M., Fomin L. V. Delayed fracture of plates under creep condition in unsteady complex stress state in the presence of aggressive medium, Appl. Math. Model., 2018, vol. 60, pp. 478–489. DOI: https://doi.org/10.1016/j.apm.2018.03.031.
  11. Wen J.-F., Tu S.-T., Xuan F.-Z., Zhang X.-W., Gao X.-L. Effects of stress level and stress state on creep ductility: Evaluation of different models, J. Mater. Sci. Techn., 2016, vol. 32, no. 8, pp. 695–704. DOI: https://doi.org/10.1016/j.jmst.2016.02.014.
  12. Radchenko V. P., Saushkin M. N. Polzuchest’ i relaksatsiia ostatochnykh napriazhenii v uprochnennykh konstruktsiiakh [Creep and Relaxation of Residual Stresses in Reinforced Structures]. Moscow, Mashinostroenie-1, 2005, 226 pp. (In Russian). EDN: RXLJLN.
  13. Samarin Yu. P. Derivation of exponential approximations for creep curves by the method of successive isolation of exponential terms, Strength Mater., 1974, vol. 6, no. 9, pp. 1062–1066. DOI: https://doi.org/10.1007/BF01528264.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Experimental (solid lines) and calculated (dashed lines) uniaxial creep curves for samples made of 3KhV4SF steel (a) and EI437B alloy (b) at given initial stresses (a: 1 — $\sigma_\text{э}=200$ MPa, 2 — $\sigma_\text{э}=225$ MPa, 3 — $\sigma_\text{э}=250$ MPa, 4 — $\sigma_\text{э}=275$ MPa, 5 — $\sigma_\text{э}=300$ MPa, 6 — $\sigma_\text{э}=325$ MPa; b: 1 — $\sigma_\text{э}=120$ MPa; 2 — $\sigma_\text{э}=160$ MPa; 3 — $\sigma_\text{э}=200$ MPa). In all experiments, samples from 3KhV4SF steel were tested at a temperature of $425\,^\circ$C, from EI437B alloy were tested at a temperature of $800\,^\circ$C

Download (210KB)
3. Figure 2. Experimental (solid lines) and calculated (dashed lines) creep curves for samples made of 3KhV4SF steel (a) and EI437B alloy (b) under uniaxial stepped loading (a: 1 — $\sigma_\text{э}=200$ MPa, 2 —

Download (159KB)
4. Figure 3. Experimental (solid lines) and calculated (dashed lines) creep curves (torsion angle curves) for samples made of 3KhV4SF steel (a) and EI437B alloy (b) during torsion: a — $\tau=144.5$ MPa, b — $\tau=92.5$ MPa

Download (154KB)
5. Figure 4. Creep curves (axial deformation) of samples made of 3KhV4SF steel under step tension with torsion: 1 — $\sigma=200$ MPa, $\tau=0$ MPa; 2 — $\sigma=200$ MPa, $\tau=78$ MPa; 3 — $\sigma=200$ MPa, $\tau=115$ MPa; 4 — $\sigma=136$ MPa, $\tau=115$ MPa; 5 — $\sigma=0$ MPa, $\tau=115$ MPa; solid line — experimental data; dash dotted line — calculation assuming similarity of deviators (1); dashed line — calculation according to the proposed model

Download (89KB)
6. Figure 5. Creep curves (torsion angle) of samples made of 3KhV4SF steel under step tension with torsion: 1 — $\sigma=200$ MPa, $\tau=0$ MPa; 2 — $\sigma=200$ MPa, $\tau=78$ MPa; 3 — $\sigma=200$ MPa, $\tau=115$ MPa; 4 — $\sigma=136$ MPa, $\tau=115$ MPa; 5 — $\sigma=0$ MPa, $\tau=115$ MPa; solid line — experimental data; dash dotted line — calculation assuming similarity of deviators (1); dashed line — calculation according to the proposed model

Download (91KB)
7. Figure 6. Creep curves (axial deformation) of samples made of EI437B alloy under step tension with torsion: 1 — $\sigma=120$ MPa, $\tau=0$ MPa; 2 — $\sigma=120$ MPa, $\tau=47$ MPa; 3 — $\sigma=120$ MPa, $\tau=69.5$ MPa; 4 — $\sigma=81$ MPa, $\tau=69.5$ MPa; 5 — $\sigma=0$ MPa, $\tau=69.5$ MPa; solid line — experimental data; dashed line — calculation according to the proposed model

Download (80KB)
8. Figure 7. Creep curves (torsion angle) of samples made of EI437B alloy under step tension with torsion: 1 — $\sigma=120$ MPa, $\tau=0$ MPa; 2 — $\sigma=120$ MPa, $\tau=47$ MPa; 3 — $\sigma=120$ MPa, $\tau=69.5$ MPa; 4 — $\sigma=81$ MPa, $\tau=69.5$ MPa; 5 — $\sigma=0$ MPa, $\tau=69.5$ MPa; solid line — experimental data; dashed line — calculation according to the proposed model

Download (81KB)

Copyright (c) 2022 Authors; Samara State Technical University (Compilation, Design, and Layout)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies