Аналитические решения квазистатических задач термоупругости с переменными физическими свойствами среды



Цитировать

Полный текст

Аннотация

Используя ортогональной метод Бубнова-Галёркина, на основе разработанного метода построения систем координатных функций, в любом приближении точно удовлетворяющих неоднородным граничным условиям, получено высокой точности приближённое аналитическое решение нелинейной квазистатической задачи термоупругости для бесконечного полого цилиндра с переменными по радиальной координате физическими свойствами. Математическая постановка задачи включает нелинейные уравнения относительно искомой функции перемещения и неоднородные граничные условия. Решение разыскивается в таком виде, чтобы оно заранее точно удовлетворяло граничным условиям задачи. Точное выполнение граничных условий осуществляется благодаря использованию координатных функций особой конструкции. Неизвестные коэффициенты решения находятся путём составления невязки исходного дифференциального уравнения и выполнения требования ортогональности невязки ко всем координатным функциям. Отсюда относительно неизвестных коэффициентов решения получается система алгебраических линейных уравнений, число которых равно числу приближений принятого решения. Показано, что с увеличением числа приближений точность решения существенно возрастает. Так, уже в девятом приближении невязка исходного дифференциального уравнения равна нулю практически во всем диапазоне изменения пространственной переменной. Максимальная невязка в шестом приближении составляет $\varepsilon = 5\cdot 10^{-4}$.

Полный текст

При скорости изменения температуры, значительно меньшей скорости распространения звука в материале, температурное поле практически не зависит от вызываемых им деформаций. В этом случае можно не учитывать зависящее от деформации слагаемое во взаимосвязанном уравнении теплоISSN: 2310-7081 (online), 1991-8615 (print); doi: http://dx.doi.org/10.14498/vsgtu1219 © 2014 Самарский государственный технический университет. Образец цитирования: В. А. К у д и н о в, А. Э. К у з н е ц о в а, А. В. Е р е м и н, Е. В. К о т о в а, “Аналитические решения квазистатических задач термоупругости с переменными физическими свойствами среды” // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2014. № 2 (35). С. 130-135. 130 Аналитические решения квазистатических задач термоупругости . . . проводности и инерционные члены в уравнениях равновесия. Математические постановки задач, в которых не учитываются указанные составляющие термоупругости, называются квазистатическими. В данном случае время теряет смысл переменной и становится параметром, а напряжения определяются исходя из температурного поля в данный конкретный момент времени. В случае учёта указанных факторов задачи термоупругости называются динамическими. Математические постановки таких задач включают сложные неоднородные гиперболические уравнения, методы решения которых пока ещё недостаточно разработаны. Исходная математическая постановка квазистатической задачи термоупругости включает: уравнения равновесия; уравнения совместности деформаций; соотношения между деформациями и радиальными перемещениями (геометрические уравнения); формулы закона Гука (физические уравнения). Если температура изменяется лишь в радиальном направлении (плоская осесимметричная задача), краевую задачу термоупругости можно свести к задаче о плоском напряжённом состоянии (тонкий круглый диск) или к задаче о плоской деформации (бесконечный цилиндр). При этом исходная математическая постановка задачи, включающая систему дифференциальных уравнений, приводится к одному уравнению относительно искомой функции напряжения или перемещения с соответствующими граничными условиями. Рассмотрим задачу термоупругости для длинного полого цилиндра в случае его плоской деформации, обусловленной плоским осесимметричным температурным полем. Математическая постановка задачи относительно искомой функции перемещения с переменными по радиальной координате физическими свойствами среды в данном случае имеет вид [1-4] dU d Er dr dr ν dE E 1+ν d U= - r (αET ), 1 - ν dr r 1 - v dr dU U (1 - ν) + ν - (1 + ν)αT r=r1 , = 0, dr r r=r2 + (1) (2) где U = U (r) - радиальное перемещение; r - радиальная координата; E = = E(r) - модуль упругости; α = α(r) - коэффициент линейного расширения; ν - коэффициент Пуассона; T = T (r) - температура. Согласно граничному условию (2), радиальные напряжения σr (r) в точках r = r1 и r = r2 равны нулю. При известных перемещениях радиальные и окружные напряжения определяются по формулам E dU U (1 - ν) + ν - (1 + ν)αT , (1 + ν)(1 - 2ν) dr r E dU U σθ = ν + (1 - ν) - (1 + ν)αT , (1 + ν)(1 - 2ν) dr r σr = (3) (4) где σr = σr (r) - радиальное напряжение; σθ = σθ (r) - окружное напряжение. Трудности получения точного аналитического решения задачи (1), (2) связаны с её нелинейностью. Рассмотрим способ нахождения её приближённого аналитического решения, согласно которому решение задачи (1), (2) при131 В. А. К у д и н о в, А. Э. К у з н е ц о в а, А. В. Е р е м и н, Е. В. К о т о в а нимается в виде [4] n U (r) = Φ(r) + qk ϕk (r), (5) k=2 где Φ(r) = A1 + A2 r - функция, удовлетворяющая неоднородным граничным условиям (2); A1 , A2 - неизвестные коэффициенты; ϕk (r) = 1 + B1 r + B2 rk - координатные функции, удовлетворяющие однородным граничным условиям (2) (при равенстве нулю слагаемых, содержащих температуру); B1 , B2 - неизвестные постоянные; n - число приближений. Для определения постоянных A1 и A2 используются неоднородные граничные условия (2). Подставляя функцию Φ(r) в (2), относительно постоянных A1 и A2 получаем следующую систему двух алгебраических линейных уравнений: A1 + A2 r1 - (1 + ν)α(r1 )T (r1 ) = 0, r1 A1 + A2 r2 - (1 + ν)α(r2 )T (r2 ) = 0. A2 (1 - ν) + ν r2 A2 (1 - ν) + ν (6) Из решения системы уравнений (6) находим r1 r2 (1 + ν) α(r1 )T (r1 ) - α(r2 )T (r2 ) , ν(r1 - r2 ) (1 + ν) r1 α(r1 )T (r1 ) - r2 α(r2 )T (r2 ) A2 = . r1 - r2 Для определения постоянных B1 и B2 используются граничные условия (2). Положив последний член соотношения (2) равным нулю, относительно неизвестных B1 и B2 получаем следующую систему двух алгебраических линейных уравнений: A1 = - k ν(1 + B1 r1 + B2 r1 ) = 0, r1 k ν(1 + B1 r2 + B2 r2 ) (1 - ν) + = 0. r2 k-1 B1 + kB2 r1 (1 - ν) + B1 + k-1 kB2 r2 (7) Из решения системы уравнений (7) находим k k ν(r2 - r1 ) ν(r2 - r1 ) , B2 = . k-1 k-1 k-1 k-1 r1 r2 (r2 - r1 ) r1 r2 (r2 - r1 )(k - kν + ν) После нахождения неизвестных постоянных A1 , A2 , B1 , B2 соотношение (5) будет точно удовлетворять граничным условиям (2). Неизвестные коэффициенты qk , k = 2, 3, . . . , n, находятся из выполнения уравнения (1). Для этого составляется его невязка и требуется ортогональность невязки ко всем координатным функциям ϕj (r), j = 2, 3, . . . , n: B1 = - r2 r1 132 dU dU Er dr dr + ν dE E 1+ν d - U- r (αET ) ϕj (r)dr = 0. (8) 1 - ν dr r 1 - ν dr Аналитические решения квазистатических задач термоупругости . . . Рис. 1. Эпюры радиальных напряжений (расчёт по формуле (3)): 1 - третье приближение; 2 - шестое приближение; 3 - девятое приближение [Figure 1. The diagrams of the radial stresses (calculation by formula (3)): 1 - the third approximation; 2 - the sixth approximation; 3 - the ninth approximation] Рис. 2. Эпюры окружных напряжений (расчет по формуле (4)): 1 - третье приближение; 2 - шестое приближение; 3 - девятое приближение [Figure 2. The diagrams of the circumferential stresses (calculation by formula (4)): 1 - the third approximation; 2 - the sixth approximation; 3 - the ninth approximation] Рис. 3. Невязка уравнения (1): 1 - шестое приближение; 2 - девятое приближение [Figure 3. The disparity of equation (1): 1 - the sixth approximation; 2 - the ninth approximation] 133 В. А. К у д и н о в, А. Э. К у з н е ц о в а, А. В. Е р е м и н, Е. В. К о т о в а Подставляя (5) в (8), после определения интегралов относительно неизвестных коэффициентов qk будем иметь систему n - 2 алгебраических линейных уравнений. После определения из решения этой системы неизвестных коэффициентов qk , k = 2, 3, . . . , n, приближённое аналитическое решение задачи (1), (2) находится из (5). В качестве конкретного примера найдём решение задачи термоупругости для полого цилиндра при следующих исходных данных: r1 = 14 мм; r2 = = 39 мм; ν = 0.2; E = 19.5 · 109 кг/м2 ; α = 10 · 10-6 К-1 . Распределение температуры по толщине слоя цилиндра принималось в виде T (r) = 170 - 6592r + 138308r2 - 1.7402 · 106 r3 . Результаты расчётов представлены на рис. 1, 2. Их анализ позволяет сделать заключение о том, что как для радиальных, так и для окружных напряжений отмечается незначительное различие результатов шестого и девятого приближений. Следовательно, уже в девятом приближении полученное решение практически совпадает с точным. Оценка невязки уравнения (1) для шестого и девятого приближений подтверждает данное заключение (см. рис. 3). Как видно из рис. 3, невязка уравнения (1) в девятом приближении практически во всем диапазоне изменения переменной r близка к нулю. Заключение. Разработана методика получения высокоточных приближенных аналитических решений квазистатических нелинейных задач термоупругости (плоская деформация, плоское напряжённое состояние) с переменными физическими свойствами среды. Решение, найденное с помощью ортогонального метода Бубнова-Галёркина при использовании полученной в данной работе системы координатных функций в любом приближении точно удовлетворяющих неоднородным краевым условиям задачи, представляет быстро сходящийся ряд. Так, уже в девятом приближении полученное решение практически совпадает с точным, что подтверждается оценкой невязки основного дифференциального уравнения краевой задачи. Отметим, что ввиду нелинейности этого уравнения точные аналитические решения подобных задач в настоящее время не получены.
×

Об авторах

Василий Александрович Кудинов

Самарский государственный технический университет

Email: totig@yandex.ru
(д.ф.-м.н., проф.), заведующий кафедрой, каф. теоретических основ теплотехники и гидродинамики Россия, 443100, Самара, ул. Молодогвардейская, 244

Анастасия Эдуардовна Кузнецова

Самарский государственный технический университет

Email: kuznetsovaae@rambler.ru
аспирант, каф. теоретических основ теплотехники и гидромеханики Россия, 443100, Самара, ул. Молодогвардейская, 244

Антон Владимирович Еремин

Самарский государственный технический университет

Email: a.v.eremin@list.ru
(к.т.н.), старший преподаватель, каф. теоретических основ теплотехники и гидромеханики Россия, 443100, Самара, ул. Молодогвардейская, 244

Евгения Валериевна Котова

Самарский государственный технический университет

Email: larginaevgenya@mail.ru
(к.т.н.), старший преподаватель, каф. теоретических основ теплотехники и гидромеханики Россия, 443100, Самара, ул. Молодогвардейская, 244

Список литературы

  1. B. A. Boley, J. H. Weiner, Theory of thermal stresses, New York, John Wiley, 1960, xvi+586 pp.
  2. Б. Боли, Дж. Уэйнер, Теория температурных напряжений. М.: Мир, 1964. 517 с.
  3. А. Д. Коваленко, Введение в термоупругость. Киев: Наукова думка, 1965. 202 с.
  4. S. P. Timoshenko, J. Goodyear, Theory of Elasticity, New York, McGraw-Hill, 1970.
  5. С. П. Тимошенко, Дж. Гудьер, Теория упругости. М.: Наука, 1979. 560 с.
  6. В. А. Кудинов, Э. М. Карташов, В. В. Калашников, Аналитические решения задач тепломассопереноса и термоупругости для многослойных конструкций. М.: Высшая школа, 2005. 430 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Самарский государственный технический университет, 2014

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах