Обзор перспективных применений наночастиц в различных отраслях промышленности

Обложка

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

С учетом развития нанотехнологий в России и мире авторами был проведен анализ перспективных направлений применения наночастиц в различных сферах, таких как медицина, энергетика, электроника и других отраслях промышленности.

Полный текст

Доступ закрыт

Об авторах

Е. С. Шитова

АО «ВНИИНМ»

Автор, ответственный за переписку.
Email: esshitova@bochvar.ru
ORCID iD: 0000-0002-9085-4813

вед. эксп.

Россия, Москва

Ф. В. Макаров

АО «ВНИИНМ»

Email: esshitova@bochvar.ru
ORCID iD: 0000-0002-5713-2974

д.т.н., гл. эксп.

Россия, Москва

А. А. Перцев

АО «ВНИИНМ»

Email: esshitova@bochvar.ru
ORCID iD: 0000-0001-7452-8228

к.т.н., перв. зам. ген. дир.

Россия, Москва

А. П. Пономаренко

АО «ВНИИНМ»

Email: esshitova@bochvar.ru
ORCID iD: 0000-0003-0220-1597

нач. управления

Россия, Москва

А. А. Штраус

АО «ВНИИНМ»

Email: esshitova@bochvar.ru
ORCID iD: 0000-0003-0020-1454

спец.

Россия, Москва

Список литературы

  1. Rudramurthy G.R., Swamy M.K. Potential applications of engineered nanoparticles in medicine and biology: an update // Journal of Biological Inorganic Chemistry. Springer Science and Business Media Deutschland GmbH, 2018. Vol. 23, no. 8. PP. 1185–1204.
  2. Rzigalinski B.A., Strobl J.S. Cadmium-containing nanoparticles: Perspectives on pharmacology and toxicology of quantum dots // Toxicology and Applied Pharmacology. 2009. Vol. 238, no. 3. PP. 280–288.
  3. Rajeshkumar S., Naik P. Synthesis and biomedical applications of Cerium oxide nanoparticles – A Review // Biotechnology Reports. Elsevier B.V., 2018. Vol. 17. PP. 1–5.
  4. Dhall A., Self W. Cerium oxide nanoparticles: A brief review of their synthesis methods and biomedical applications // Antioxidants. MDPI, 2018. Vol. 7, no. 8.
  5. Shih C.M., Shieh Y.T., Twu Y.K. Preparation of gold nanopowders and nanoparticles using chitosan suspensions // Carbohydr Polym. 2009. Vol. 78, no. 2. PP. 309–315.
  6. Dasaiah M. et al. Laser Ablation Synthesized Copper Nanoparticles for Cancer Treatment: An Animal Cell Line Studies Laser Ablation Synthesized Copper Nanoparticles for Cancer Treatment: An Animal Cell Line Studies "Laser Ablation Synthesized Copper Nanoparticles for Cancer Treatment: An Animal Cell Line Studies // Am J Cancer Pre. v. 2018. Vol. 6, no. 2. PP. 35–40.
  7. Çeşmeli S., Biray Avci C. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies // J. Drug Target. 2019. Vol. 27, no. 7. PP. 762–766.
  8. Ansari S.M. et al. Cobalt nanoparticles for biomedical applications: Facile synthesis, physiochemical characterization, cytotoxicity behavior and biocompatibility // Appl Surf Sci. Elsevier B.V., 2017. Vol. 414. PP. 171–187.
  9. Brown A.L. et al. Biodistribution and toxicity of micellar platinum nanoparticles in mice via intravenous administration // Nanomaterials. MDPI AG, 2018. Vol. 8, no. 6.
  10. Cholkar K., Hirani N.D., Natarajan C. Nanotechnology-Based Medical and Biomedical Imaging for Diagnostics // Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier, 2017. PP. 355–374.
  11. Burdușel A.C. et al. Biomedical applications of silver nanoparticles: An up-to-date overview // Nanomaterials. MDPI AG, 2018. Vol. 8, no. 9.
  12. Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties // Advances in Colloid and Interface Science. Elsevier B.V., 2019. Vol. 271.
  13. Islan G.A. et al. Silybin-conjugated gold nanoparticles for antimicrobial chemotherapy against Gram-negative bacteria // J Drug Deliv Sci Technol. Editions de Sante, 2019. Vol. 53.
  14. Sakthivel C., Keerthana L., Prabha I. Current status of platinum based nanoparticles: Physicochemical properties and selected applications – a review // Johnson Matthey Technology Review. Johnson Matthey Public Limited Company, 2019. Vol. 63, no. 2. PP. 122–133.
  15. Bai K. et al. Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres // Int J Nanomedicine. 2017. Vol. 12. PP. 4527–4539.
  16. Lee S.H., Jun B.H. Silver nanoparticles: Synthesis and application for nanomedicine // International Journal of Molecular Sciences. MDPI AG, 2019. Vol. 20, no. 4.
  17. Ebrahimi K., Shiravand S., Mahmoudvand H. Biosynthesis of copper nanoparticles using aqueous extract of Capparis spinosa fruit and investigation of its antibacterial activity // Marmara Pharm J. Marmara University, 2017. Vol. 21, no. 4. PP. 866–871.
  18. Alzahrani E., Ahmed R.A. Synthesis of copper nanoparticles with various sizes and shapes: Application as a superior non-enzymatic sensor and antibacterial agent // Int J Electrochem Sci. Electrochemical Science Group, 2016. Vol. 11, no. 6. PP. 4712–4723.
  19. Vallabani N.V.S., Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics // 3 Biotech. Springer Verlag, 2018. Vol. 8, no. 6.
  20. Arias L.S. et al. Iron oxide nanoparticles for biomedical applications: A perspective on synthesis, drugs, antimicrobial activity, and toxicity // Antibiotics. MDPI AG, 2018. Vol. 7, no. 2.
  21. Cotin G. et al. Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization, and Application // Iron Oxide Nanoparticles for Biomedical Applications. Elsevier, 2018. PP. 43–88.
  22. Huber D.L. Synthesis, properties, and applications of iron nanoparticles // Small. 2005. Vol. 1, no. 5. PP. 482–501.
  23. Yadollahpour A. Applications of gadolinium nanoparticles in magnetic resonance imaging: a review on recent advances in clinical imaging // International Journal of Pharmacy & Technology. 2016. Vol. 8. PP. 11379–11393.
  24. Huang C., Tsourkas A. Gd-based macromolecules and nanoparticles as magnetic resonance contrast agents for molecular imaging // Curr Top Med Chem. NIH Public Access, 2013. Vol. 13, no. 4. P. 411.
  25. Bapat R.A. et al. An overview of application of silver nanoparticles for biomaterials in dentistry // Materials Science and Engineering C. Elsevier Ltd, 2018. Vol. 91. PP. 881–898.
  26. Covarrubias C., Durán J.P., Maureira M. Facile synthesis of lithium carbonate nanoparticles with potential properties for bone repair applications // Mater Lett. Elsevier B.V., 2018. Vol. 219. PP. 205–208.
  27. Zhang Q., Xiao L., Xiao Y. Porous Nanomaterials Targeting Autophagy in Bone Regeneration // Pharmaceutics. MDPI, 2021. Vol. 13, no. 10.
  28. Raj S. et al. Nanotechnology in cosmetics: Opportunities and challenges // J Pharm Bioallied Sci. Wolters Kluwer – Medknow Publications, 2012. Vol. 4, no. 3. PP. 186.
  29. Chiari-Andréo B.G. et al. Nanoparticles for cosmetic use and its application // Nanoparticles in Pharmacotherapy. William Andrew Publishing, 2019. PP. 113–146.
  30. Effiong D.E. et al. Nanotechnology in Cosmetics: Basics, Current Trends and Safety Concerns – A Review // Adv Nanopart. Scientific Research Publishing, 2019. Vol. 9, no. 1. PP. 1–22.
  31. Mao S.S., Shen S., Guo L. Nanomaterials for renewable hydrogen production, storage and utilization // Progress in Natural Science: Materials International. Elsevier B.V., 2012. Vol. 22, no. 6. PP. 522–534.
  32. Mostovshchikov A.V., Ilyin A.P., Egorov I.S. Effect of electron beam irradiation on the thermal properties of the aluminum nanopowder // Radiation Physics and Chemistry. Elsevier Ltd, 2018. Vol. 153. PP. 156–158.
  33. Bunker C.E., Smith M.J. Nanoparticles for hydrogen generation // J Mater Chem. 2011. Vol. 21, no. 33. PP. 12173–12180.
  34. Kader M.S. et al. A Novel Method for Generating H2 by Activation of the µAl-Water System Using Aluminum Nanoparticles // Applied Sciences (Switzerland). MDPI, 2022. Vol. 12, no. 11. PP. 5378.
  35. Alekseenko A.A. et al. Durability of de-alloyed PtCu/C electrocatalysts // Int J Hydrogen Energy. Elsevier Ltd, 2018. Vol. 43, no. 51. PP. 22885–22895.
  36. Quievryn C., Bernard S., Miele P. Polyol-based synthesis of praseodymium oxide nanoparticles // Nanomaterials and Nanotechnology. InTech Europe, 2014. Vol. 4, no. 1.
  37. Jiang B. et al. Mesoporous metallic rhodium nanoparticles // Nat Commun. Nature Publishing Group, 2017. Vol. 8.
  38. Liu X. et al. V2O5-Based nanomaterials: Synthesis and their applications // RSC Advances. Royal Society of Chemistry, 2018. Vol. 8, no. 8. PP. 4014–4031.
  39. Wasmi B. et al. Synthesis of Vanadium Pentoxide Nanoparticles as Catalysts for the Ozonation of Palm Oil // Ozone Sci Eng. Taylor and Francis Inc., 2016. Vol. 38, no. 1. PP. 36–41.
  40. Khan N.T., Jameel N., Review M. Copper Nanoparticles-Synthesis and Applications // Acta Scientific Pharmaceutical Sciences. 2018. Vol. 2. PP. 2581–5423.
  41. Wahyudi S. et al. Synthesis and Applications of Copper Nanopowder – A Review // IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing, 2018. Vol. 395, no. 1.
  42. Tibbetts K. Laser ablation in liquid: A powerful route to new nanoparticle catalysts // Research Outreach. 2019. No. 106. PP. 50–53.
  43. Zhang X. et al. Synthesis of magnesium nanoparticles with superior hydrogen storage properties by acetylene plasma metal reaction // Int J Hydrogen Energy. 2011. Vol. 36, no. 8. PP. 4967–4975.
  44. Makridis S.S. et al. Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage // Int J Hydrogen Energy. Pergamon, 2013. Vol. 38, no. 26. PP. 11530–11535.
  45. Alanbari M.H. et al. Nanotechnology applied to renewable energy // The Online Journal of Science and Technology. 2019. Vol. 9, no. 4. PP. 244–251.
  46. Avcı B., Caglar Y., Caglar M. Controlling of surface morphology of ZnO nanopowders via precursor material and Al doping // Mater Sci Semicond Process. Elsevier Ltd, 2019. Vol. 99. PP. 149–158.
  47. Ozturk T. et al. An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectrochemical solar cells // Solar Energy. Elsevier Ltd, 2017. Vol. 157. PP. 47–57.
  48. Chewchinda P. et al. Preparation of Si nanoparticles by laser ablation in liquid and their application as photovoltaic material in quantum dot sensitized solar cell // Journal of Physics: Conference Series. Institute of Physics Publishing, 2014. Vol. 518, no. 1.
  49. Ma C. et al. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion. 2018.
  50. Guisbiers G. et al. Synthesis of tunable tellurium nanoparticles // Semicond Sci Technol. Institute of Physics Publishing, 2017. Vol. 32, no. 4.
  51. Ma C. et al. The optical duality of tellurium nanoparticles for broadband solar energy harvesting and efficient photothermal conversion // Sci Adv. American Association for the Advancement of Science, 2018. Vol. 4, no. 8.
  52. Sircar A. et al. Applications of nanoparticles in enhanced oil recovery // Petroleum Research. KeAi Publishing Communications Ltd., 2022. Vol. 7, no. 1. PP. 77–90.
  53. Cheraghian G., Hendraningrat L. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding // International Nano Letters 2015 6:1. Springer, 2015. Vol. 6, no. 1. PP. 1–10.
  54. Kotadia H.R. et al. Limitations of nanoparticle enhanced solder pastes for electronics assembly // 2012 12th IEEE International Conference on Nanotechnology (IEEE-NANO). IEEE, 2012. PP. 1–5.
  55. Ahmadi M. et al. Synthesis of Tungsten Oxide Nanoparticles using a Hydrothermal Method at Ambient Pressure.
  56. Keiteb A.S. et al. Structural and optical properties of zirconia nanoparticles by thermal treatment synthesis // J. Nanomater. Hindawi Limited, 2016.
  57. Yin S. et al. Silicon lithium-ion battery anode with enhanced performance: Multiple effects of silver nanoparticles // J Mater Sci Technol. Chinese Society of Metals, 2018. Vol. 34, no. 10. PP. 1902–1911.
  58. Zhao X., Yang Q., Quan Z. Tin-based nanomaterials: Colloidal synthesis and battery applications // Chemical Communications. Royal Society of Chemistry, 2019. Vol. 55, no. 60. PP. 8683–8694.
  59. Hoseinpour V., Ghaemi N. Green synthesis of manganese nanoparticles: Applications and future perspective–A review // Journal of Photochemistry and Photobiology B: Biology. Elsevier B.V., 2018. Vol. 189. PP. 234–243.
  60. Abdel-Karim R., Reda Y., Abdel-Fattah A. Review – Nanostructured Materials-Based Nanosensors // J Electrochem Soc. The Electrochemical Society, 2020. Vol. 167, no. 3. P. 037554.
  61. Kumar H. et al. Applications of nanotechnology in biosensor-based detection of foodborne pathogens // Sensors (Switzerland). MDPI AG, 2020. Vol. 20, no. 7.
  62. Анциферова И.В. Зависимость процесса уплотнения при спекании с использованием наноразмерных металлических порошков (научный обзор) // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. 2015. Т. 17. № 2. C. 13–20.
  63. Yasnó J.P., Gunnewiek R.F.K., Kiminami R.H.G.A. Microwave synthesis of ultra-high temperature ceramic ZrC nanopowders // Advanced Powder Technology. Elsevier B.V., 2019. Vol. 30, no. 7. PP. 1348–1355.
  64. Liu L. et al. Fabrication of fine-grained undoped Y2O3 transparent ceramic using nitrate pyrogenation synthesized nanopowders // Ceram Int. Elsevier Ltd, 2019. Vol. 45, no. 5. PP. 5339–5345.
  65. Liu Q. et al. Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd:YAG nanopowders // Opt Mater (Amst). Elsevier B.V., 2018. Vol. 80. PP. 127–137.
  66. Shin D. et al. Comparison of different tungsten precursors for preparation of tungsten nanopowder by RF induction thermal plasma // Int J Refract Metals Hard Mater. Elsevier Ltd, 2020. Vol. 86.
  67. Feng P., Cao W. Properties, Application and Synthesis Methods of Nano-Molybdenum Powder // Journal of Materials Science and Chemical Engineering. Scientific Research Publishing, Inc, 2016. Vol. 04, no. 9. PP. 36–44.
  68. Iban P. et al. L’université Bordeaux 1 école doctorale des sciences chimiques Influence des nano-particules d’alumine (Al2O3) et de di-borure de titane (TiB2) sur la microstructure et les propriétés de l’alliage Al-Si9-Cu3-Fe1 pour des applications de fonderie à haute pression.
  69. Malaki M. et al. Advanced metal matrix nanocomposites // Metals (Basel). MDPI AG, 2019. Vol. 9, no. 3.
  70. Gaur S., Khanna A.S. Functional Coatings by Incorporating Nanoparticles // Nano Res Appl. 2015. Vol. 1, no. 1. P. 1.
  71. Flores-Castañeda M. et al. Bismuth nanoparticles synthesized by laser ablation in lubricant oils for tribological tests // J Alloys Compd. Elsevier Ltd, 2015. Vol. 643, no. S1. PP. S67–S70.
  72. Jeelani P.G. et al. Multifaceted Application of Silica Nanoparticles. A Review // Silicon. Springer, 2020. Vol. 12, no. 6. PP. 1337–1354.
  73. Rastogi A. et al. Application of silicon nanoparticles in agriculture // 3 Biotech. Springer Verlag, 2019. Vol. 9, no. 3.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис.1. Области применения наночастиц в медицине

Скачать (157KB)
3. Рис.2. Области применения наночастиц в энергетике

Скачать (98KB)
4. Рис.3. Области применения наночастиц в электронике

Скачать (85KB)
5. Рис.4. Области применения наночастиц в промышленности

Скачать (108KB)

© Шитова Е.С., Макаров Ф.В., Перцев А.А., Пономаренко А.П., Штраус А.А., 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах