Corrosion studies of the Ti50.0Ni50.0 martensitic alloy in different structural states by the gravimetric method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper considers the corrosion behavior of the Ti50.0Ni50.0 martensitic alloy in coarse-grained and ultrafine-grained states in various solutions. In the coarse-grained state, no significant corrosion damage is observed; corrosion products are clearly visible in a dark field taken with an inverted microscope. In the ultrafine-grained state, significant corrosion damage is observed in the form of pitting which size is several micrometers. X-ray phase analysis of the Ti50.0Ni50.0 alloy made it possible to determine the presence of a high proportion (more than 70%) of TiNiH1.4 hydride in the ultrafine-grained state after corrosion tests while the proportion of hydride in the coarse-grained state is less than 2%. The TiNi alloy contains the Ti2Ni phase enriched with Ti, both in the coarse-grained and ultrafine-grained states. Moreover, in the ultrafine-grained state its share is 6 times higher. In addition, 5.3% of the Ti3Ni3Ox phase is observed in the ultrafine-grained state, while this phase was not found in the coarse-grained state. There is also a phase redistribution of the TiNi matrix in the ultrafine-grained state.

Full Text

Restricted Access

About the authors

A. A. Churakova

Institute of Molecule and Crystal Physics, subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Ufa State Aviation Technical University

Author for correspondence.
Email: churakovaa_a@mail.ru
ORCID iD: 0000-0001-9867-6997

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Ufa; Ufa

E. M. Kayumova

Ufa State Aviation Technical University; Ufa State Petroleum Technological University

Email: churakovaa_a@mail.ru
ORCID iD: 0000-0001-9636-9184

Postgraduate, Laboratory Assistant

Russian Federation, Ufa; Ufa

References

  1. Otsuka K. Physical metallurgy of Ti–Ni-based shape memory alloys / K. Otsuka X. Ren // Prog. Mater. Sci. 2005. V. 50. Is. 5. PP. 511–678.
  2. Yamauchi K., Ohkata K. Shape Memory and Superelastic Alloys: Technologies and Applications. Tsuchiya S.Miyazaki. – Woodhead Publishing, Cambridge, UK, 2011. 232 p.
  3. Lecce L. Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications. Concilio. – Butterworth-Heinemann, Oxford, UK, 2015. 934 p.
  4. Zhang J., Somsen C., Simon T., Ding X., Hou S., Ren S., Ren X., Eggeler G., Otsuka K., Sun J. Leaf-like dislocation substructures and the decrease of martensitic start temperatures: a new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys. Acta Mater. 2012. V. 60. PP. 1999–2006.
  5. Pushin V.G., Gunderov D.V., Kourov N.I., Yurchenko L.I., Prokofiev E.A., Stolyarov V.V., Zhu Y.T., Valiev R.Z. Nanostructures and phase transformations in TiNi shape memory alloys subjected to severe plastic deformation. Ultrafine grained materials III, TMS, Charlotte: NC, USA. 2004. PP. 481–486.
  6. Stepanova T.P., Krasnoyarsky V.V., Tomashov N.D., Druzhinina I.P. Influence of nickel on the anode behavior of titanium in river water // Protection of metals. 1978. V. 14. No. 2. PP. 169–171.
  7. Deryagina O.G., Paleolog E.N., Akimov A.T., Dagurov V.G. Electrochemical behavior of anodically oxidized Ni-Ti alloys in sulfate solutions containing chloride ions // Electrochemistry. 1980. V. 16. No. 12. PP. 1828–1833.
  8. Tan L., Dodd R.A., Crone W.C. Corrosion and wear – corrosion behavior of NiTi modified by plasma source ion implantation // Biomaterials. 2003. V. 24. PP. 3931–3939. https://doi.org/10.1016/S0142-9612(03)00271-0
  9. Okazaki Y., Rao S., Ito Y., Tateishi T. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V // Biomaterials. 1998. V. 19. PP. 1197–1215. https://doi.org/10.1016/s0142-9612(97)00235-4
  10. Shevchenko N., Pham M.T., Maitz M.F. Studies of surface modified NiTi alloy // Applied Surface Science. 2004. V. 235. PP. 126–131.
  11. Vandenkerckhove R., Chandrasekaran M., Vermaut P., Portier R., Delacy L. Corrosion behavior of a supere-lastic Ni-Ti alloys // Materials Science and Engineering. 2004. V. 378. PP. 532–536.
  12. Хода А. Влияние микроструктуры на механические свойства и характер водородного охрупчивания биоматериалов из никелида титана // Физика металлов и металловедение. 2019. Т. 120. № 8. С. 806–817.
  13. Wever D.J. Electrochemical and surface characterization of a nickel–titanium alloy / D.J.Wever A.G. Veldhuizen J.de Vries H.J. Busscher D.R.A. Uges J.R. Van Horn // Biomaterials. 1998. V. 19. РР. 761–769.
  14. Hu T., C. Chu Y. Xin S. Wu K.W.K. Yeung P.K. Chu. Corrosion products and mechanism on NiTi shape memory alloy in physiological environment // Journal of Materials Research. 2010. V. 25. PP. 350–358.
  15. Ryhanen J. Biocompatibility evaluation of nickel titanium shape memory metal alloy // Materials Science. 1999. P. 18.
  16. Амирханова Н.А., Валиев Р.З., Адашева С.Л., Прокофьев Е.А. Исследование коррозионных и электрохимических свойств сплавов на основе никелида титана в крупнозернистом и ультрамелкозернистом состояниях // Вестник УГАТУ. 2006. Т. 7. № 1. С. 143–146.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Microstructure of the Ti50.0Ni50.0 alloy in the hardened state (OM). Image (b) shows a selected area at high magnification, the arrow marks the martensitic relief

Download (6MB)
3. Fig.2. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 1M H2SO4 solution in the coarse-grained state

Download (2MB)
4. Fig.3. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 1 M HCl solution in the coarse-grained state

Download (3MB)
5. Fig.4. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 3% NaCl solution in the coarse-grained state

Download (288KB)
6. Fig.5. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 3M HCl solution in the coarse-grained state

Download (2MB)
7. Fig.6. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 3M H2SO4 solution in the coarse-grained state

Download (2MB)
8. Fig.7. Photographs of the structure of Ti50.0Ni50.0 alloy samples before corrosion tests in the ultrafine-grained state

Download (4MB)
9. Fig.8. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 1M H2SO4 solution in the ultrafine-grained state

Download (3MB)
10. Fig.9. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 1M HCl solution in the ultrafine-grained state

Download (3MB)
11. Fig.10. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 3% NaCl solution in the ultrafine-grained state

Download (2MB)
12. Fig.11. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 3M HCl solution in the ultrafine-grained state

Download (2MB)
13. Fig.12. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope in a 3M H2SO4 solution in the ultrafine-grained state

Download (2MB)
14. Fig.13. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained using an optical microscope (a-d) and an inverted microscope (e-h) in a NaCl + H2SO4 solution in the coarse-grained (a, b, e, f) and ultrafine-grained states (c, d, g, h) after exposure for 30 days

Download (6MB)
15. Fig.14. Photographs of the surface of Ti50.0Ni50.0 alloy samples obtained by a scanning electron microscope in a NaCl + H2SO4 solution in the coarse-grained (a, b) and ultrafine-grained (c, d) states

Download (2MB)
16. Fig.15. X-ray patterns of Ti50.0Ni50.0 alloy samples after corrosion tests in the NaCl+H2SO4 solution

Download (657KB)

Copyright (c) 2023 Churakova A.A., Kayumova E.M.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies