Microspherical diamond tips for investigation of local mechanical properties of materials by instrumented indentation

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The purpose of this study is to develop and demonstrate a technique for preparing a spheroconical diamond indenter with a characteristic tip size of about 5 μm. The production of the described tip is realized by using a picosecond laser to form the workpiece and a focused ion beam for the final processing of the product. An atomic force microscope was used to control the geometry during manufacturing. The height of the working area of the obtained tip was 1 µm. The study also demonstrates the applicability of the fabricated indenter and provides load-insertion diagrams during indentation and AFM images of the residual indentations.

Full Text

Restricted Access

About the authors

A. S. Kushnereva

FSBI TISNCM

Author for correspondence.
Email: kushnereva.as@phystech.edu
ORCID iD: 0000-0002-8756-6722

Research Assistant

Russian Federation, Troitsk

I. V. Laktionov

FSBI TISNCM

Email: kushnereva.as@phystech.edu
ORCID iD: 0000-0002-8576-3669

Research Assistant

Russian Federation, Troitsk

A. S. Useinov

FSBI TISNCM

Email: kushnereva.as@phystech.edu
ORCID iD: 0000-0002-9937-0954

Cand. of Sci. (Physics and Mathematics), Deputy Director

Russian Federation, Troitsk

S. V. Orlov

ISAN

Email: kushnereva.as@phystech.edu
ORCID iD: 0000-0003-2086-284X

Lead Engineer

Russian Federation, Troitsk

E. S. Statnik

NUST MISIS

Email: kushnereva.as@phystech.edu
ORCID iD: 0000-0002-1105-9206

Junior Researcher

Russian Federation, Moscow

P. A. Somov

NUST MISIS

Email: kushnereva.as@phystech.edu
ORCID iD: 0009-0003-9398-6410

Junior Researcher

Russian Federation, Moscow

References

  1. Meng L. et al. Identification of material properties using indentation test and shape manifold learning approach // Computer Methods in Applied Mechanics and Engineering. 2015. V. 297. PP. 239–257.
  2. Feng Yu, Jian Fang, Omacht D., Mingcheng Sun, Yingshi Li. A new instrumented spherical indentation test methodology to determine // Theoretical and Applied Fracture Mechanics. 2022. V. 124, no. 4. P. 1037.
  3. Han T. et al. Free standing nanoindentation of penta-graphene via molecular dynamics: Mechanics and deformation mechanisms // Mechanics of Materials. 2023. V. 180. P. 104628.
  4. Farmakovskaya A.A., Okorokova N.S., Perchenok A.V. Application of the spherical indenter for determination of the elastic modulus of coatings // E3S Web of Conferences. EDP Sciences, 2023. Т. 389. P. 01084.
  5. Marimuthu K.P. et al. Spherical indentation for brittle fracture toughness evaluation by considering kinked-cone-crack // Journal of the European Ceramic Society. 2017. V. 37, no. 1. PP. 381–391.
  6. Hill R., Storåkers B., Zdunek A.B. A theoretical study of the Brinell hardness test // Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1989. V. 423, no. 1865. PP. 301–330.
  7. Mesarovic S.D., Fleck N.A. Spherical indentation of elastic–plastic solids // Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1999. V. 455, no. 1987. PP. 2707–2728.
  8. Huang C.C., Chiang T.C., Fang T.H. Grain size effect on indentation of nanocrystalline copper // Applied Surface Science. 2015. V. 353. PP. 494–498.
  9. Broitman E. Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview // Tribology Letters. 2017. V. 65, no. 1. P. 23.
  10. Qian L. et al. Comparison of nano-indentation hardness to microhardness // Surf. Coatings Technol. 2005. V. 195, no. 2–3. PP. 264–271.
  11. Wu M. et al. The influence of the focus position on laser machining and laser micro-structuring monocrystalline diamond surface // Optics and Lasers in Engineering. 2018. V. 105. PP. 60–67.
  12. Parandoush P., Hossain A. A review of modeling and simulation of laser beam machining // International journal of machine tools and manufacture. 2014. V. 85. PP. 135–145.
  13. Lin Z., Ji L., Wang W. Precision machining of single crystal diamond cutting tool via picosecond laser irradiation // International Journal of Refractory Metals and Hard Materials. 2023. V. 114. P. 106226.
  14. Coq Germanicus R. et al. Quantitative mapping of high modulus materials at the nanoscale: comparative study between atomic force microscopy and nanoindentation // Journal of Microscopy. 2020. V. 280. no. 1. PP. 51–62.
  15. Roa S., Haberkorn N., Sirena M. Atomic force microscopy nano-indentation for testing mechanical properties in thin films // Materials Today: Proceedings. 2019. V. 14. PP. 113–116.
  16. Haggag F.M. Standard Test Methods for Automated Ball Indentation (ABI) Testing of Metallic Materials and Structures to Determine Tensile Properties and Stress-Strain Curves // Advanced Technology Corporation. 1988–2009. PP. 2–20.
  17. ГОСТ Р 56232-2014. Определение диаграммы "напряжение – деформация" методом инструментального индентирования шара. Стандартинформ, 2016. P. 2–32.
  18. Chao Chang, Garrido M.A., Ruiz-Hervias J., Zhu Zhang, Le-le Zhang. Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials // Advances in Material Science and Enginiring. 2018. V. 2018. P. 9.
  19. Kucharski S., Woźniacka S. Size effect in single crystal copper examined with spherical indenters // Metallurgical and Materials Transactions A. 2019. V. 50. PP. 2139–2154.
  20. Pathak S. et al. Understanding pop-ins in spherical nanoindentation // Applied Physics Letters. 2014. V. 105, no. 16.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Image of a fabricated microspherical diamond indenter in a scanning electron microscope column

Download (427KB)
3. Fig.2. Atomic force microscope image of a spherical tip (a) and cross-sectional profile through its apex (b)

Download (522KB)
4. Fig.3. NanoScan-4D nanohardness tester

Download (712KB)
5. Fig.4. Indentation diagrams of the AMG-6 sample obtained on the NanoScan-4D nanohardness tester using a microspherical diamond tip.

Download (231KB)
6. Fig.5. A series of prints with a load of 5 mN on the AMG-6 alloy surface. The prints are marked with arrows. The depth of the prints is 147±3 nm. The image was obtained on an optical microscope with a magnification of 150x

Download (671KB)
7. Fig.6. Atomic force microscope image of an imprint obtained with a microspherical diamond tip (a) and its cross-sectional profile (b)

Download (583KB)

Copyright (c) 2024 Kushnereva A.S., Laktionov I.V., Useinov A.S., Orlov S.V., Statnik E.S., Somov P.A.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies