Analysis of changes in microstructure and temperatures of martensitic transformations in TiNi alloy with different structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the presented article studies were carried out of the influence of multiple martensitic transformations B2-B19’ on the structure and temperatures of transformations in different structural states of the TiNi alloy. It is shown that in coarse-grained, ultrafine-grained and nanocrystalline TiNi alloys, consistent changes occur in the microstructure and temperatures of phase transformations, with an increase in the number of thermal cycles to n=100 with rapid heating and rapid cooling to -196 °C. Transformation temperatures in the ultrafine-grained Ti49.15Ni50.85 state are more resistant to thermal cycling (TC) than in the coarse-grained state. The formation of martensite nanotwins in the nanostructural state after multiple thermal cycles was discovered.

Full Text

Restricted Access

About the authors

A. A. Churakova

Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Author for correspondence.
Email: churakovaa_a@mail.ru
ORCID iD: 0000-0001-9867-6997

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Ufa; Ufa

E. I. Iskhakova

Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology

Email: churakovaa_a@mail.ru
ORCID iD: 0009-0001-0907-6146

Research Assistant

Russian Federation, Ufa; Ufa

References

  1. Khachin V.N., Pushin V.G., Kondratiev V.V. Titanium nickelide: structure and properties / M.: Nauka, 1992. 161 p.
  2. Brailovski V. Shape memory alloys: fundamentals, modeling, applications / V. Brailovski S. Prokoshkin P. Terriaultet F. Trochu. Montreal: Ecolede technology esuperieure (ETS) Publ., 2003. 851 p.
  3. Shape Memory Materials / Ed. by K. Otsuka and C.M. Wayman. Cambridge: Cambridge University Press, 1999. 284 p.
  4. Gunther V.E. Medical materials and implants with shape memory / V.E. Gunter G.Z. Dambaev P.G. Sysolyatin et al. Tomsk: TSU, 1998. 487 p.
  5. Miyazaki S. Effect of thermal cycling on the transformation temperatures of Ti-Ni alloys / S. Miyazaki Y. Igo K. Otsuka // Acta metallurgica. 1986 V. 34. No.10. PP. 2045–2051.
  6. Erofeev V. Ya. Phase hardening during the martensitic transformation of titanium nickelide / V. Ya. Erofeev L.A. Monasevich V.A. Pavskaya, Yu. I. Pascal // FMM. 1982. T.53, No. 5. PP. 963–965.
  7. Mironov Yu.P. Evolution of the crystal structure during phase hardening of titanium nickelide / Yu.P. Mironov P.G. Erokhin S.N. Kulkov // News of universities. Physics. 1997. No. 2. PP. 100–104.
  8. Furuya Y. Thermal cyclic deformation and degradation of shape memory effect in Ti-Ni alloy / Y. Furuya Y.C. Park // Nondestructive Testing and Evaluation. 1992 V. 8.9, № 1–6. PP. 541–554.
  9. Lin G.M. Thermal cycling effects in Cu-Zn-Al shape memory alloy by positron lifetime measurements / G.M. Lin J.K.L. Lai C.Y. Chung // Scripta Metallurgica et Materialia. 1995 V. 32. No.11. PP. 1865–1869.
  10. Liang X. Thermal cycling stability and two-way shape memory effect of Ni–Cu–Ti–Hf alloys / X. Liang Y. Chen H. Shen Z. Zhang // Solid State Communications. 2001 V. 119. PP. 381–385.
  11. Valiev R.Z. Bulk nanostructured metal materials: preparation, structure and properties / R.Z. Valiev I.V. Alexandrov. M.: Akademkniga, 2007. 398 p.
  12. Valiev R.Z. Bulk nanostructured materials from severe plastic deformation / R.Z. Valiev R.K. Islamgaliev I.V. Alexandrov // Progress in Material Science. 2000 V. 45. PP. 103–189.
  13. Tatyanin E.V. Preparation of amorphous TiNi alloy during shear deformation under pressure / E.V. Tatyanin V.G. Kurdyumov V.B. Fedorov // FMM. 1986. T.62, No. 1. pp. 133–137.
  14. Valiev R.Z. Metastable nanostructured SPD TiNi alloys with unique properties / R.Z. Valiev D.V. Gunderov V.G. Pushin // Journal Metastable and nanostructured materials. 2005 V. 24–25. PP. 7–12.
  15. Prokoshkin S.D. Evolution of structure during severe plastic deformation of shape memory alloys based on TiNi / S.D. Prokoshkin I.Yu. Khmelevskaya S.V. Dobatkin I.B. Trubitsyna E.V. Tatyanin V.V. Stolyarov E.A. Prokofiev // FMM. 2004. T.97, No. 6. PP. 84–90.
  16. Valiev R.Z. Mechanical behavior of nanocrystalline TiNi alloy produced by SPD / R.Z. Valiev D.V. Gunderov A.V. Lukyanov V.G. Pushin // Journal of Materials Science. 2012 V. 47. No. 22. PP. 7848–7853.
  17. Belyaev S. Peculiarities of residual strain accumulation during thermal cycling of TiNi alloy / S. Belyaev N. Resnina A. Sibirev // Journal of Alloys and Compounds.2012 V. 542. PP. 37–42.
  18. Belyaev S. Deformation of Ti-51.5at.%Ni alloy during thermal cycling under different thermal-mechanical conditions / S. Belyaev N.Resnina R.Zhuravlev // Journal of Alloys and Compounds. 2013 V. 577. S.1. P. S232–S236.
  19. Belyaev S. Stability of mechanical behavior and work performance in TiNi-based alloys during thermal cycling / S. Belyaev N. Resnina // International Journal of Materials Research. 2013 V. 104. No.1. PP. 11–17.
  20. Urbina C. Effect of thermal cycling on the thermomechanical behaviour of NiTi shape memory alloys / C. Urbina S.De la Flor F. Ferrando // Materials Science and Engineering: A. 2009 V. 501. PP. 197–206.
  21. Tsoi K. Part I. Thermomechanical characteristics of shape memory alloys / K. Tsoi J. Schrooten R. Stalmans // Materials Science and Engineering: A. 2004 V. 368. No.1–2. PP. 286–298.
  22. Morin M. Influence of thermal cycling on the reversible martensitic transformation in a Cu-Al-Ni shape memory alloy / M. Morin F. Trivero // Materials Science and Engineering: A. 1995 V. 196. No.1–2. PP. 177–181.
  23. He X. Transformation behaviour with thermal cycling in Ti50Ni43Cu7 shape memory alloy / X. He L. Zhao X. Wang R. Zhang M. Li // Materials Science and Engineering: A. 2006 V. 427. No.1–2. PP. 327–330.
  24. Filip P. Influence of cycling on the reversible martensitic transformation and shape memory phenomena in TiNi alloys / P. Filip K. Mazanec // Scripta Metallurgica et Materialia. 1994 V. 30. No.1. PP. 67–72.
  25. Otsuka K. Martensitic transformations in nonferrous shape memory alloys / K. Otsuka X. Ren // Materials Science and Engineering: A. 1999 V. 273.275. PP. 89–105.
  26. McCormick P.G. Thermodynamic analysis of the martensitic transformation in NiTi II. Effect of transformation cycling / P.G. McCormick Y. Liu // Acta Metallurgica et Materialia. 1994 V. 42. No.7. PP. 2407–2413.
  27. Besseghini S. Ni-Ti-Hf shape memory alloy: effect of aging and thermal cycling / S. Besseghini E. Villa A. Tuissi // Materials Science and Engineering: A. 1999 V. 275. PP. 390–394.
  28. Kwarciak J. Effect of thermal cycling and Ti2Ni precipitation on the stability of the Ni-Ti alloys / J. Kwarciak Z. Lekston H. Morawirec // Journal of Materials Science. 1987 V. 7. PP. 2341–2345.
  29. Nishida M. Phase transformations in a Ti50Ni47.5Fe2.5 shape memory alloy / M. Nishida C.M. Wayman T. Honma // Metallography. 1986 V. 19. № 1. PP. 99–113.
  30. Shimizu K. Effect of ageing and thermal cycling on shape memory alloys / K. Shimizu // Journal of Electron Microscopy. 1985 V. 34. PP. 277–278.
  31. Hwang C.M. Phase transformations in TiNiFe, TiNiAl and TiNi alloys / C.M. Hwang C.M. Wayman // Scripta Metallurgica. 1983 V. 17. № 11. PP. 1345–1350.
  32. Van Humbeeck J. Cycling effects. Fatigue and degradation of shape memory alloys / J. Van Humbeeck // Journal de Physique IV. 1991 V. 1. PP. C4–C199.
  33. Liu Y. Factors influencing the development of two-way shape memory in NiTi / Y. Liu P.G. McCormick // Acta Metallurgica et Materialia. 1990 V. 38. No.7.– PP. 1321–1326.
  34. Jean R. The thermal cycling effect on Ti-Ni-Cu shape memory alloy / R. Jean J. Duh // Scripta Metallurgica et Materialia. 1995 V. 32. № 6. PP. 885–890.
  35. Amengual A. An experimental study of the partial transformation cycling of shape-memory alloys / A. Amengual A. Likhachev E. Cesari // Scripta Materialia. 1996 V. 34. № 10. PP. 1549–1554.
  36. Wagner M.F. Effect of low-temperature precipitation on the transformation characteristics of Ni-rich NiTi shape memory alloys during thermal cycling / M.F.-X. Wagner S.R. Dey H. Gugel J. Frenzel, Ch. Somsen G. Eggeler // Intermetallics. 2010 V. 8. No.6. PP. 1172–1179.
  37. Tang W. Analysis of the influence of cycling on TiNi shape memory alloy properties / W. Tang R. Sandström // Materials & Design. 1993 V. 14. No.2. PP. 103–113.
  38. Pelton A.R. Effects of thermal cycling on microstructure and properties in Nitinol / A.R. Pelton G.H. Huang P. Moinec R. Sinclaird // Materials Science and Engineering: A. 2012 V. 532. PP. 130–138.
  39. Wayman C.M. Transformation behavior and the shape memory in thermally cycled TiNi / C.M. Wayman I. Cornelis K. Shimizu // Scripta Metallurgica. 1972 V. 6. No.2. PP. 115–122.
  40. Wasilewski R.J. On the martensitic transformation in TiNi / R.J. Wasilewski S.R. Butler J.E. Hanlon // Metal Science. 1967 V. 1. № 1. PP. 104–110.
  41. Resnina N. Multi-stage martensitic transformations induced by repeated thermal cycling of equiatomic TiNi alloy / N. Resnina S. Belyaev // Journal of Alloys and Compounds. 2009 V. 486. No.1–2. PP. 304–308.
  42. Sibirev A. Unusual multistage martensitic transformation in TiNi shape memory alloy after thermal cycling / A. Sibirev S. Belyaev N. Resnina // Materials Science Forum. 2013 V. 738.739. PP. 372–376.
  43. Morgan N.B. A review of shape memory stability in NiTi alloys / N.B. Morgan C.M. Friend // Journal de Physique IV. 2001 V. 11. PP. 325–332.
  44. Tadaki T. Thermal cycling effects in an aged Ni-rich Ti-Ni shape memory alloy / T. Tadaki Y. Nakata K. Shimizu // Transactions of the Japan Institute of Metals. 1987 V. 28. No.11. PP. 883–890.
  45. Uchil J. Effect of thermal cycling on R-phase stability in a NiTi shape memory alloy / J. Uchil K. Ganesh Kumara K.K. Mahesh // Materials Science and Engineering: A. 2002 V. 332. No.1–2. PP. 25–28.
  46. Ibarra A. Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals / A. Ibarra J. San Juan E.H. Bocanegra M.L. No // Acta Materialia. 2007 V. 55. No.14. PP. 4789–4798.
  47. Otsuka K. Martensitic transformations in nonferrous shape memory alloys / K. Otsuka X. Ren // Materials Science and Engineering: A. 1999 V. 273.275. PP. 89–105.
  48. Liu Y. Influence of heat treatment on the mechanical behaviour of a NiTi alloy / Y. Liu P. McCormick // ISIJ International. 1989 V. 29. No.5. PP. 417–422.
  49. Simon T. On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys / T. Simon A. Kroger C. Somsen A. Dlouhy G. Eggeler // Acta Materialia. 2010 V. 58. No.5. PP. 1850–1860.
  50. Wasilewski R. Martensitic transformation and fatigue strength in TiNi / R. Wasilewski // Scripta Metallurgica. 1971 V. 5. No.3. PP. 207–211.
  51. Wang X. Improved functional stability of a coarse-grained Ti-50.8 at.% Ni shape memory alloy achieved by precipitation on dislocation networks. Scripta Materialia. 163, (2019).
  52. Li H.F. Nanocrystalline Ti49.2Ni50.8 shape memory alloy as orthopaedic implant material with better performance. Journal of Materials Science & Technology. 35, 10, (2019).
  53. Resnina N. Entropy change in the B2→B19’ martensitic transformation in TiNi alloy / N. Resnina S. Belyaev // Thermochimica Acta. 2015 V. 602. PP. 30–35.
  54. Ortin J. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations / J. Ortin A. Planes // Acta Metallurgica. 1988 V. 36. PP. 1873–1889.
  55. Planes A. Energy contributions in the martensitic transformation of shape memory alloys / A.Planes J.L. Macqueron J. Ortin // Philosophical Magazine Letters. 1988 V. 57. PP. 291–298.
  56. Valiev R.Z. Nanostructured materials obtained by intense plastic deformation / R.Z. Valiev I.V. Alexandrov. M.: Logos, 2000. 272 p.
  57. Zheng Y.F. HREM studies of twin boundary structure in deformed martensite in the cold rolled TiNi shape memory alloy / Y.F. Zheng L.C. Zhao H.Q. Ye // Materials Science and Engineering A. 2001. V. 297. PP. 185–196.
  58. Churakova A.A., Gunderov D.V., Dmitriev S.V. Microstructure transformation and physical and mechanical properties of ultrafine-grained and nanocrystalline TiNi alloys in multiple martensitic transformations B2-B19’, Materialwissenschaft und Werkstofftechnik 2018, 49, 6, 769–778.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Optical image of the microstructure of the Ti49.15Ni50.85 alloy in the coarse-grained state after quenching (a) and after thermal cycling (b)

Download (3MB)
3. Fig.2. TEM images of the microstructure of the Ti49.15Ni50.85 alloy in the CG state: bright-field (a, c, d) and dark-field (b) images, microelectron diffraction pattern corresponding to this state. Figure (d) shows a section of the microstructure containing a Ti4Ni2O particle

Download (1MB)
4. Fig.3. Typical TEM images of a microstructure in the CG state followed by TC, n=20: bright-field images (a, b) and the corresponding microelectron diffraction pattern (b)

Download (2MB)
5. Fig.4. TEM images of the Ti49.15Ni50.85 alloy in the state after n=50 thermal cycles: bright-field (a, c-d) and dark-field (b) images, microelectron diffraction pattern. Figure (d) shows an image of section 1 (c) of the grain boundary with thick extinction contours with high magnification

Download (1MB)
6. Fig.5. Typical microstructures of the Ti49.15Ni50.85 alloy in the coarse-grained state and after multiple thermal cycles (n=100): bright-field (a, b) images, microelectron diffraction pattern. Figure (b) shows a section of the grain boundary with thick extinction contours (shown by arrows)

Download (1MB)
7. Fig.6. TEM images of the microstructure of the Ti49.15Ni50.85 alloy in UFG: bright-field (a, c–d) and dark-field (b) images, microelectron diffraction pattern

Download (1MB)
8. Fig.7. TEM images of the microstructure in the UFG state and TC n=20: bright-field (a, c–d) and dark-field (b) images, microelectron diffraction pattern. Figures (c, d) show characteristic sections of the structure - grains with equilibrium boundaries and a section with a large accumulation of dislocations

Download (1MB)
9. Fig.8. TEM images of the microstructure of the Ti49.15Ni50.85 alloy in the UFG state with n=50: bright-field (a, c) and dark-field (b) images, microelectron diffraction pattern

Download (1MB)
10. Fig.9. TEM images of the microstructure in the UFG state with a maximum number of cycles n=100: bright-field (a, c–d) and dark-field (b) images, microelectron diffraction pattern

Download (1MB)
11. Fig.10. TEM images of the microstructure of the Ti49.15Ni50.85 alloy in the amorphous-nanocrystalline state: bright-field (a) and dark-field (b) images, microelectron diffraction pattern. In figure (a) the letters indicate areas with amorphous and nanocrystalline phases

Download (1MB)
12. Fig.11. TEM images in the amorphous-nanocrystalline state with subsequent thermal cycling: bright-field (a) and dark-field (b) images, inset (c) shows a microelectron diffraction pattern. Figure (a) shows the boundaries of the amorphous phase with dashes

Download (2MB)
13. Fig.12. Typical fine structure of the Ti49.15Ni50.85 alloy in the NC state: bright-field (a, c) and dark-field (b) images, microelectron diffraction pattern. Figure (c) is an enlarged image of the nanocrystalline structure

Download (2MB)
14. Fig.13. Microstructure in the NC state with subsequent thermal cycling: bright-field (a, c-d) and dark-field (b) images, microelectron diffraction pattern. In figures (c, d), areas that can be designated as nanotwins or stacking defects are highlighted with a dash

Download (1MB)
15. Fig.14. Graphs of the dependence of the characteristic temperatures of martensitic transformations for the CG state on the number of thermal cycles: a – temperatures of direct transformation, b – temperatures of reverse transformation and R-phase; in the UFG state, on the number of thermal cycles: c – temperature of direct transformation; d – reverse transformation temperatures; in NC state (e)

Download (647KB)
16. Fig.15. Dependences of the energies of direct and reverse phase transformations in the alloy in the CG (a) and UFG (b) states

Download (222KB)

Copyright (c) 2024 Churakova A.A., Iskhakova E.I.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies