The interconnection of properties and dispersion degree of nanofiller for nanocomposites polymer/carbon nanotube

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In present work, the parameter of the dispersion degree of nanofiller is introduced, which characterizes quantitatively the dispersion level of the latter in nanocomposites polymer/carbon nanotube. This parameter is a function of size of the nanofiller aggregate and content. The relationship between the dispersion level of the nanofiller and the reinforcement degree is shown, which makes it possible to predict the properties of the nanocomposites under consideration.

Full Text

Restricted Access

About the authors

L. B. Atlukhanova

Dagestan State Medical University

Email: i_dolbin@mail.ru
ORCID iD: 0000-0002-5341-3349

Cand. of Sci. (Pedagogical), Docent

Russian Federation, Makhachkala

I. V. Dolbin

Kabardino-Balkarian State University named after H.M.Berbekov

Author for correspondence.
Email: i_dolbin@mail.ru
ORCID iD: 0000-0001-9148-2831

Cand. of Sci. (Chemical), Associate Professor, Docent

Russian Federation, Nalchik

References

  1. Šupova M., Martynkova G.S., Barabaszova K. Effect of nanofillers dispersion in polymer matrices: a review // Sci. Adv. Mater. 2011. V. 3. No. 1. PP. 1–25.
  2. Kim H., Abdala A.A., Macosko C.W. Graphene /polymer nanocomposites // Macromolecules. 2010. V. 43. No. 16. PP. 6515–6530.
  3. Козлов Г.В., Долбин И.В. Особенности процесса агрегации наполнителя в нанокомпозитах полимер-углеродные нанотрубки /| Прикладная механика и техническая физика. 2020. Т. 61. № 2. С. 125–129.
  4. Omidi M., Rokni H., Milani A.S., Seehaler R.J., Arasten R. Prediction of the mechanical characteristics of multi-walled carbon nanotube /epoxy composites using a new form of the rule of mixtures // Carbon. 2010. V. 48. No. 11. PP. 3218–3228.
  5. Атлуханова Л.Б., Козлов Г.В. Физикохимия нанокомпозитов полимер-углеродные нанотрубки. М.: Изд-во "Спутник +", 2020. 292 c.
  6. Schaefer D.W., Justice R.S. How nano are nanocomposites? // Macromolecules. 2007. V. 40. No. 24. PP. 8501–8517.
  7. Bridge B. Theoretical modeling of the critical volume fraction for percolation conductivity of fibre-loaded conductive polymer composites // J. Mater. Sci. Lett. 1989. V. 8. No. 2. PP. 102–103.
  8. Lim G., Ahn K., Bok S., Nam J., Lim B. Curving silver nanovires using liquid droplets for highly stretchable and durable percolation networks // Nanoscale. 2017. V. 9. No. 26. PP. 8938–8941.
  9. Sheng N., Boyce M.C., Parks D.M., Rutledge G.C., Abes J.I., Cohen R.E. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle // Polymer. 2004. V. 45. No. 3. PP. 487–506.
  10. Козлов Г.В., Ризванова П.Г., Долбин И.В., Магомедов Г.М. Определение модуля упругости нанонаполнителя в матрице полимерных нанокомпозитов // Известия ВУЗов. Физика. 2019. Т. 62. № 1. С. 112–116.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. The relationship of dispersion degree of nanofiller ηd and complex characteristic (RCNT/ϕн)1/2 for nanocomposites EP/MCNT

Download (86KB)
3. Fig.2. The comparison of calculated according to the equations (12) Df1 and (11) Df2 values of fractal dimensions of MCNT annular formations for nanocomposites EP/MCNT. The straight line shows the relationship 1 : 1

Download (84KB)
4. Fig.3. The comparison of calculated according to the equations (12) (1) and experimentally obtained (2) dependences of reinforcement degree Еn/Еm on volume contents of nanofiller ϕn for nanocomposites EP/MCNT

Download (83KB)

Copyright (c) 2024 Atlukhanova L.B., Dolbin I.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies