Laboratory complex for obtaining colloidal photonic-crystal structures. Part 1

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Colloidal photonic crystal structures are a promising material for nanoengineering. The goal of the work was to create a set of scalable equipment for the synthesis of monodisperse colloidal particles and the production of superlattices from them. The authors presented a description of the kit, the results of a study of the structures and formulated recommendations for the design of equipment and the implementation of technological processes.

Full Text

Restricted Access

About the authors

E. V. Panfilova

Bauman Moscow State Technical University (National Research university)

Author for correspondence.
Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0001-7944-2765

Cand. of Sci. (Tech), Docent

Russian Federation, Moscow

V. A. Diubanov

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0009-0007-8569-3270

Postgraduate

Russian Federation, Moscow

A. R. Ibragimov

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru

Assistant

Russian Federation, Moscow

D. Yu. Shramko

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0002-0824-6772

Assistant

Russian Federation, Moscow

References

  1. Панфилова Е.В. Перспективные методы формирования планарных наноструктур // Наноинженерия, Машиностроение. 2014. № 8. С. 29–33.
  2. Chen G., Hong W. Mechanochromism of structural-colored materials // Advanced Optical Materials. 2020. Vol. 8. No. 19. P. 2000984.
  3. Ding T. et al. Revealing invisible photonic inscriptions: images from strain // ACS Applied Materials & Interfaces. 2015. Vol. 7. No. 24. PP. 13497–13502.
  4. Inan H. et al. Photonic crystals: emerging biosensors and their promise for point-of-care applications // Chemical Society Reviews. 2017. Vol. 46. No. 2. PP. 366–388.
  5. Hongbo X. et al. H2O-and ethanol concentration-responsive polymer/gel inverse opal photonic crystal // Journal of Colloid and Interface Science. 2022. Vol. 605. PP. 803–812.
  6. Kocak G., Tuncer C., Bütün V. pH-Responsive polymers // Polymer Chemistry. 2017. Vol. 8. No. 1. PP. 144–176.
  7. He G., Manthiram A. Nanostructured Li2MnSiO4/C cathodes with hierarchical macro-/mesoporosity for lithium-ion batteries // Advanced Functional Materials. 2014. Vol. 24. No. 33. PP. 5277–5283.
  8. Hines L. et al. Soft actuators for small-scale robotics // Advanced materials. 2017. Vol. 29. No. 13. P. 1603483.
  9. Wang Y. et al. Chameleon-inspired structural-color actuators // Matter. 2019. Vol. 1. No. 3. PP. 626–638.
  10. Joshi G.K. et al. Ultrasensitive photoreversible molecular sensors of azobenzene-functionalized plasmonic nanoantennas // Nano Letters. 2014. Vol. 14. No. 2. PP. 532–540.
  11. Ming T. et al. Resonance-Coupling-Based Plasmonic Switches // Small. 2010. Vol. 6. No. 22. PP. 2514–2519.
  12. Franklin D. et al. Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces // Nature communications. 2015. Vol. 6. No. 1. P. 7337.
  13. Shao L., Zhuo X., Wang J. Advanced plasmonic materials for dynamic color display // Advanced Materials. 2018. Vol. 30. No. 16. P. 1704338.
  14. Puzzo D.P. et al. Electroactive inverse opal: a single material for all colors // Angewandte Chemie. 2009. Vol. 121. No. 5. PP. 961–965.
  15. Walish J.J. et al. Bioinspired electrochemically tunable block copolymer full color pixels // Advanced Materials. 2009. Vol. 21. No. 30. PP. 3078–3081.
  16. Nonappa. Precision nanoengineering for functional self-assemblies across length scales // Chemical Communications. 2023. Vol. 59. No. 93. PP. 13800–13819.
  17. Панфилова Е.В., Хань Н.Т.Х., Дюбанов В.А. Разработка процесса получения коллоидного монослоя полистирола для технологии микросферной литографии // Инженерный журнал: наука и инновации. 2020. № 10 (106). P. 8.
  18. Narayanan S. et al. Thin photonic crystal templates for enhancing the SERS signal: a case study using very low concentrations of dye molecules // Physica Scripta. 2024. Vol. 99. No. 3. P. 035512.
  19. Snapp P. et al. Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer // Advanced Functional Materials. 2019. Vol. 29. No. 33. P. 1902216.
  20. Беседина К.Н. Разработка методов управляемого формирования и исследование тонкопленочных опаловых наноструктур: дис. на соискание ученой степени кандидата технических наук. Москва, 2014.
  21. Ko Y.G., Shin D.H. Effects of liquid bridge between colloidal spheres and evaporation temperature on fabrication of colloidal multilayers // The Journal of Physical Chemistry B. 2007. Vol. 111. No. 7. PP. 1545–1551.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Structural transformation stages in technology of colloidal photonic crystals formation

Download (112KB)
3. Fig.2. Structure of the laboratory complex

Download (477KB)
4. Fig.3. Methods of controlled stimulation of self-assembly process in obtaining colloidal photonic crystals: a – dip coating; b – vertical depo- sition; c – electrophoretic deposition; d – Langmuir – Blodgett technique; e – spin coating; f – centrifugation method in test tubes

Download (260KB)
5. Fig.4. Plot of dependence of the number of layers in the colloidal film on the pulling speed

Download (39KB)

Copyright (c) 2024 Panfilova E.V., Diubanov V.A., Ibragimov A.R., Shramko D.Y.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies