A method for studying the mutual orientation of plate surfaces made of optically transparent materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

This paper describes a device for express measurement of plate tilt angles and angles between faces of plates transparent in the visible range in the visible radiation range. The range of values of angles, which can be measured by this setup, is calculated. Measurements and calculations of reflection coefficients of samples from silicon, sapphire, quartz and polymethyl methacrylate, the surfaces of which have different roughness, allowed us to formulate a restriction on the quality of the surface under study: the rms roughness should not exceed 50 nm.

Full Text

Restricted Access

About the authors

G. Kh. Sultanova

Federal State Budgetary Scientific Institution Technological Institute for Superhard and New Carbon Materials; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”

Email: useinov@mail.ru
ORCID iD: 0000-0002-4770-5724

Junior Researcher

Russian Federation, Troitsk; Dolgoprudny

A. A. Prakash

Federal State Budgetary Scientific Institution Technological Institute for Superhard and New Carbon Materials; Federal State Autonomous Educational Institution of Higher Education “Moscow Institute of Physics and Technology (National Research University)”

Email: useinov@mail.ru
ORCID iD: 0009-0003-8615-7972

Researcher Trainee

Russian Federation, Troitsk; Dolgoprudny

E. V. Gladkikh

Federal State Budgetary Scientific Institution Technological Institute for Superhard and New Carbon Materials

Email: useinov@mail.ru
ORCID iD: 0000-0001-8273-3934

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Troitsk

A. A. Rusakov

Federal State Budgetary Scientific Institution Technological Institute for Superhard and New Carbon Materials

Email: useinov@mail.ru
ORCID iD: 0000-0001-5702-1353

Junior Researcher

Russian Federation, Troitsk

N. V. Kornilov

Federal State Budgetary Scientific Institution Technological Institute for Superhard and New Carbon Materials

Email: useinov@mail.ru
ORCID iD: 0000-0001-6449-4562

Cand. of Sci. (Physics and Mathematics), Leading Researcher

Russian Federation, Troitsk

A. S. Useinov

Federal State Budgetary Scientific Institution Technological Institute for Superhard and New Carbon Materials

Author for correspondence.
Email: useinov@mail.ru
ORCID iD: 0000-0002-9937-0954

Cand. of Sci. (Physics and Mathematics), Deputy Director

Russian Federation, Troitsk

References

  1. Seal M. Thermal and optical applications of thin film diamond. Phil. Trans. R. Soc. Lond. A. 1993. Vol. 342. No. 1664. PP. 313–322. https://doi.org/10.1098/rsta.1993.0024
  2. Stoupin S., Terentyev S.A., Blank V.D. et al. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source. J. Appl. Crystallogr. 2014. Vol. 47. No. 4. PP. 1329–1336. https://doi.org/10.1107/S1600576714013028
  3. Stoupin S., Krawczyk T., Liu Z. et al. Selection of CVD Diamond Crystals for X-ray Monochromator Applications Using X-ray Diffraction Imaging. Crystals. 2019. Vol. 9. No. 8. https://doi.org/10.3390/cryst9080396
  4. Polyakov S.N., Digurov R.V., Martyushov S.Y. et al. X-ray micro-beam characterization of an elastically bent thin diamond plate for x-ray optics applications. J. Opt. Soc. Am. B. 2023. Vol. 40. No. 7. PP. 1844–1850. https://doi.org/10.1364/JOSAB.488940
  5. Tao Y., Boss J.M., Moores B.A. et al. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 2014. Vol. 5. No. 1. P. 3638. https://doi.org/10.1038/ncomms4638
  6. Graziosi T., Mi S., Kiss M. et al. Single crystal diamond micro-disk resonators by focused ion beam milling. APL Photonics. 2018. Vol. 3. No. 12. P. 126101. https://doi.org/10.1063/1.5051316
  7. Kobayashi J., Uesu Y. A new optical method and apparatus `HAUP’ for measuring simultaneously optical activity and birefringence of crystals. I. Principles and construction. J. Appl. Crystallogr. 1983. Vol. 16. No. 2. PP. 204–211. https://doi.org/10.1107/S0021889883010262
  8. Hernández-Rodríguez C., Gómez-Garrido P. Optical anisotropy of quartz in the presence of temperature-dependent multiple reflections using a high-accuracy universal polarimeter. J. Phys. D. Appl. Phys. 2000. Vol. 33. No. 22. P. 2985. https://doi.org/10.1088/0022-3727/33/22/318
  9. Herreros-Cedrés J., Hernández-Rodríguez C., Guerrero-Lemus R. Influence of the imperfect parallelism of crystal faces on high-accuracy universal polarimeter measurements. J. Opt. A Pure Appl. Opt. 2006. Vol. 8. No. 1. P. 44. https://doi.org/10.1088/1464-4258/8/1/007
  10. Maslenikov I.I., Reshetov V.N., Useinov A.S. et al. In Situ Surface Imaging Through a Transparent Diamond Tip. Instrum. Exp. Tech. 2018. Vol. 61. No. 5. PP. 719–724. https://doi.org/10.1134/S002044121804022X
  11. Султанова Г.Х., Усеинов А.С., Дигуров Р.В. et al. Моделирование оптических отклонений в изображениях, получаемых через индентор-объектив, для комбинированных исследований механических свойств in-situ. Изв. вузов. Химия и хим. технология. 2023. T. 66. № 10. С. 97–101. https://doi.org/10.6060/ivkkt.20236610.10y
  12. Востоков H.В., Гапонов С.В., Миронов В.Л. et al. Определение эффективной шероховатости поверхности и угловой зависимости коэффициента отражения в рентгеновском диапазоне длин волн по данным атомно-силовой микроскопии. Поверхность. Рентген. синхротр. и нейтрон. исслед. 2001. № 1. С. 38.
  13. Bennett H.E., Porteus J.O. Relation Between Surface Roughness and Specular Reflectance at Normal Incidence. J. Opt. Soc. Am. 1961. Vol. 51. № 2. PP. 123–129. https://doi.org/10.1364/JOSA.51.000123
  14. Trezza T.A., Krochta J.M. Specular reflection, gloss, roughness and surface heterogeneity of biopolymer coatings. J. Appl. Polym. Sci. 2001. Vol. 79. No. 12. PP. 2221–2229. https://doi.org/10.1002/1097-4628(20010321)79:12 < 2221::AID-APP1029 > 3.0.CO;2-F

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Installation scheme

Download (49KB)
3. Fig.2. Dependence of the distance between the reflexes on the screen of the installation on the refractive index of the sample at the thickness of the sample d = 10 mm

Download (37KB)
4. Fig.3. Dependence of the reflex shift on the sample tilt angle

Download (41KB)
5. Fig.4. Dependence of the angle between the faces of samples with different refractive indices on the magnitude of the reflex shift

Download (61KB)

Copyright (c) 2024 Sultanova G.K., Prakash A.A., Gladkikh E.V., Rusakov A.A., Kornilov N.V., Useinov A.S.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies