SEM-CLSM correlation microscopy and its application to electrospun gelatin fibers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The most comprehensive information about microstructure of the sample can be obtained by combining different types of high-resolution microscopy. This combination turns out to be especially informative when measurements are carried out not only on the same image, but on the same area of the sample. This approach is called correlation microscopy. Typically, such experiments require careful preparation of the sample and transferring it between the two microscopes. The current work uses correlation microscopy which combines scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Electrospun gelatin fibers deposited onto metallized glass are studied using these two methods. The possibility of using correlation analysis to combine images obtained by SEM and CLSM is demonstrated.

Full Text

Restricted Access

About the authors

D. V. Bagrov

Lomonosov Moscow State University, Biological Department

Author for correspondence.
Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0002-6355-7282

Cand. of Sci. (Physics and Mathematics), Leading Researcher

Russian Federation, Moscow

E. R. Pavlova

LOPUKHIN FRCC PCM

Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0002-2511-7622

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Moscow

A. S. Bogdanova

LOPUKHIN FRCC PCM; Moscow Institute of Physics and Technology

Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0001-5369-8519

Junior Researcher

Russian Federation, Moscow; Dolgoprudny

A. M. Moysenovich

Lomonosov Moscow State University, Biological Department

Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0001-5379-5829

Cand. of Sci. (Biological), Leading Researcher

Russian Federation, Moscow

T. V. Mitko

LOPUKHIN FRCC PCM; Moscow Institute of Physics and Technology

Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0002-0107-1906

Cand. of Sci. (Biological), Junior Researcher

Russian Federation, Moscow; Dolgoprudny

A. A. Ramonova

Lomonosov Moscow State University, Biological Department

Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0002-3081-4721

Junior Researcher

Russian Federation, Moscow

D. V. Klinov

LOPUKHIN FRCC PCM; Moscow Institute of Physics and Technology

Email: bagrov@mail.bio.msu.ru
ORCID iD: 0000-0001-8288-2198

Cand. of Sci. (Physics and Mathematics), Head of Laboratory

Russian Federation, Moscow; Dolgoprudny

References

  1. Novotna V., Horak J., Konecny M., Hegrova V., Novotny O., Novacek Z. et al. AFM-in-SEM as a Tool for Comprehensive Sample Surface Analysis. Micros Today. 2020. Vol. 28. PP. 38–46.
  2. Dorozhkin P., Kuznetsov E., Schokin A., Timofeev S., Bykov V. AFM + Raman Microscopy + SNOM + Tip-Enhanced Raman: Instrumentation and Applications. Micros Today. 2010. Vol. 18. PP. 28–32.
  3. Басманов П.И., Кириченко В.Н., Филатов Ю.Н., Юров Ю.Л. Высокоэффективная очистка газов от аэрозолей фильтрами Петрянова. М.: Наука, 2002.
  4. Syed M.H., Khan M.M.R., Zahari M.A.K.M., Beg M.D.H., Abdullah N. A review on current trends and future prospectives of electrospun biopolymeric nanofibers for biomedical applications. Eur Polym J. 2023. Vol. 197. P. 112352.
  5. Bogdanova A.S., Sokolova A.I., Pavlova E.R., Klinov D.V., Bagrov D.V. Investigation of cellular morphology and proliferation on patterned electrospun PLA-gelatin mats. J Biol Phys. 2021. Vol. 47. PP. 205–14.
  6. Pavlova E., Nikishin I., Bogdanova A., Klinov D., Bagrov D. The miscibility and spatial distribution of the components in electrospun polymer–protein mats. RSC Ad. v. 2020. Vol. 10. PP. 4672–4680.
  7. Choong L.T., Yi P., Rutledge G.C. Three-dimensional imaging of electrospun fiber mats using confocal laser scanning microscopy and digital image analysis. J Mater Sci. 2015. Vol. 50. PP. 3014–3030.
  8. Pavlova E.R., Bagrov D.V., Kopitsyna M.N., Shchelokov D.A., Bonartsev A.P., Zharkova I.I. et al. Poly(hydroxybutyrate- co -hydroxyvalerate) and bovine serum albumin blend prepared by electrospinning. J Appl Polym Sci. 2017. Vol. 134. P. 45090.
  9. Mikhutkin A.A., Kamyshinsky R.A., Tenchurin T.K., Shepelev D., Orekhov A.S., Grigoriev T.E. et al. Towards Tissue Engineering: 3D Study of Polyamide-6 Scaffolds. Bionanoscience 2018. Vol. 8. PP. 511–521.
  10. Arganda-Carreras I., Sorzano C.O.S., Marabini R., Carazo J.M., Ortiz-de-Solorzano C., Kybic J. Consistent and Elastic Registration of Histological Sections Using Vector-Spline Regularization. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics). Vol. 4241. LNCS. 2006. PP. 85–95.
  11. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012. Vol. 9. PP. 676–682.
  12. Яминский И.В., Ахметова А.И., Мешков Г.Б. Программное обеспечение "ФемтоСкан Онлайн" и визуализация нанообъектов в микроскопии высокого разрешения. НАНОИНДУСТРИЯ. 2018. Т. 11. С. 414–416.
  13. Topuz F., Uyar T. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon. Mater Sci Eng C. 2017. Vol. 80. PP. 371–378.
  14. Koombhongse S., Liu W., Reneker D.H. Flat polymer ribbons and other shapes by electrospinning. J Polym Sci Part B Polym Phys. 2001. Vol. 39. PP. 2598–2606.
  15. Wang L., Pai C., Boyce M.C., Rutledge G.C. Wrinkled surface topographies of electrospun polymer fibers. Appl Phys Lett. 2009. Vol. 94. P. 151916.
  16. Katsen-Globa A., Puetz N., Gepp M.M., Neubauer J.C., Zimmermann H. Study of SEM preparation artefacts with correlative microscopy: Cell shrinkage of adherent cells by HMDS-drying. Scanning. 2016. Vol. 38. PP. 625–633.
  17. Gong Z., Chen B.K., Liu J., Zhou C., Anchel D., Li X. et al. Fluorescence and SEM correlative microscopy for nanomanipulation of subcellular structures. Light Sci Appl. 2014. Vol. 3. PP. 224–e224.
  18. Choi B., Iwanaga M., Miyazaki H.T., Sugimoto Y., Ohtake A., Sakoda K. Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer. Chem Commun. 2015. Vol. 51. PP. 11470–11473.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Design of the experiment. Electrospun fibres are arranged on a metal coating on glass, and a mark in the form of a cross is made on the coating

Download (97KB)
3. Fig.2. Results of the correlation microscopy experiment. a, b – SEM images, yellow frames show the region of interest location; c – CLSM image; d – inverted SEM image prepared for correlation analysis; e – deformed image (d); f – deformed image (c). In panels e and f, a green triangle marks two fibres whose locations are markedly different, and red arrows mark a ribbon that is clearly visible by SEM and invis- ible to CLSM

Download (514KB)
4. Fig.3. A pair of images obtained by CLSM (A, maximum intensity projection, image inverted) and SEM (B) prepared for correlation analysis. Reference points are shown in orange, red arrows indi- cate ribbons that are visible in the SEM study but not visible in the CLSM study. Image size 130 × 130 µm

Download (98KB)
5. Fig.4. Comparison of fibre width data obtained from SEM and CLSM images

Download (72KB)

Copyright (c) 2024 Bagrov D.V., Pavlova E.R., Bogdanova A.S., Moysenovich A.M., Mitko T.V., Ramonova A.A., Klinov D.V.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies