Study of the formation process of manganese dioxide nanoparticles stabilized by alkyldimethylbenzylammonium chloride

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Samples of nanosized manganese dioxide stabilized with alkyldimethylbenzylammonium chloride were obtained by chemical deposition. During optimization, it was revealed that for the synthesis of manganese dioxide nanoparticles with an average hydrodynamic radius of less than 1200 nm, the optimal synthesis parameters are: temperature from 20 to 35 °C, KMnO4 mass from 4 to 5 g and stabilizer concentration from 4 to 5%. Study of the samples using scanning electron microscopy showed that a sample of nano-sized manganese dioxide stabilized with alkyldimethylbenzylammonium chloride is formed by irregularly shaped aggregates ranging in size from 1 to 75 μm, which consist of nanoparticles with a diameter from 50 to 250 nm. The structure was studied using X-ray diffractometry and it was found that the resulting sample has a tetragonal crystal lattice with space group I4/m; presence of this phase is indicated by presence of low-intensity broadened peaks. As a result of analyzing the data obtained by modeling the interaction of the alkyldimethylbenzylammonium chloride molecule and manganese oxide through the nitrogen, it was established that the presented compounds are energetically favorable (∆E = 1299.571 kcal/mol), and interaction occurs through nitrogen. This compound has a chemical hardness value η ≥ 0.030 eV, which indicates its stability. As a result of the analysis of the IR-spectra of alkyldimethylbenzylammonium chloride and nano-sized manganese dioxide stabilized by alkyldimethylbenzylammonium chloride, it can be concluded that interaction between alkyldimethylbenzylammonium chloride and manganese dioxide occurs through nitrogen.

Full Text

Restricted Access

About the authors

A. A. Nagdalian

North-Caucasus Federal University

Author for correspondence.
Email: anagdalian@ncfu.ru
ORCID iD: 0000-0002-6782-2821

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

A. V. Blinov

North-Caucasus Federal University

Email: anagdalian@ncfu.ru
ORCID iD: 0000-0002-4701-8633

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

A. A. Kravtsov

North-Caucasus Federal University

Email: anagdalian@ncfu.ru
ORCID iD: 0000-0002-0645-1166

Cand. of Sci. (Tech), Docent

Russian Federation, Stavropol

R. Sh. Zakaeva

North Ossetian State Medical Academy

Email: anagdalian@ncfu.ru
ORCID iD: 0000-0002-9930-6055

Cand. of Sci. (Chemical), Docent

Russian Federation, Vladikavkaz

P. S. Leontev

North-Caucasus Federal University

Email: anagdalian@ncfu.ru
ORCID iD: 0000-0001-6532-5816

Laboratory Assistant

Russian Federation, Stavropol

M. A. Taravanov

North-Caucasus Federal University

Email: anagdalian@ncfu.ru
ORCID iD: 0000-0003-3243-3241

Laboratory Assistant

Russian Federation, Stavropol

A. O. Senkova

North-Caucasus Federal University

Email: anagdalian@ncfu.ru
ORCID iD: 0000-0002-6615-2563

Student

Russian Federation, Stavropol

References

  1. Барсукова В.С. Физиолого-генетические аспекты устойчивости растений к тяжелым металлам / Экология. Серия аналитических обзоров мировой литературы. 1997. № 47. С. 1–67.
  2. Chetri K. Role of trace elements in hepatic encephalopathy: zinc and manganese / K.Chetri G.Choudhuri / Indian Journal of Gastroenterology: Official Journal of the Indian Society of Gastroenterology. 2003. V. 22. PP. 28–30.
  3. Bowman A.B. et al. Role of manganese in neurodegenerative diseases / Journal of Trace Elements in Medicine and Biology. 2011. Vol. 25. No. 4. PP. 191–203.
  4. Бобренко И.А., Вакалова Е.А., Гоман Н.В. Эффективность опудривания семян микроэлементами (Zn, Cu, Mn) при возделывании яровой пшеницы в условиях лесостепи Западной Сибири / Омский научный вестник. 2013. № 1 (118). С. 166–170.
  5. Кабата-Пендиас А. Проблемы современной биогеохимии микроэлементов // Российский химический журнал. 2005. Т. 49, № 3. С. 15–19.
  6. Жуйков Д.В. Мониторинг содержания микроэлементов (Mn, Zn, Co) в агроценозах юго-западной части Центрально-Черноземного района России / Земледелие. 2020. № 5. С. 9–13.
  7. Qian J.H. et al. Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species / American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1999. Vol. 28, no. 5. PP. 1448–1455.
  8. Abbas S.T. et al. Trace elements accumulation in soil and rice plants irrigated with the contaminated water // Soil and Tillage Research. 2007. Vol. 94, no. 2. PP. 503–509.
  9. Koyama M. et al. Trace elements in land plants: concentration ranges and accumulators of rare earths, Ba, Ra, Mn, Fe, Co and heavy halogens // Journal of Radioanalytical and Nuclear Chemistry. 1987. Vol. 112. PP. 489–506.
  10. Акентьева М.И. Влияние марганца на рост и развитие растений // В сб.: Успехи молодежной науки в агропромышленном комплексе, 2022. С. 5–15.
  11. Панин М.С., Королев А.Н. Влияние марганца на молодые растения яровой пшеницы // Агрохимия. 2007. № 1. С. 68–77.
  12. Клышевская С.В., Тимофеева Я.О., Бурдуковский М.Л. Влияние использования удобрений на накопление марганца сельскохозяйственными культурами // Вестник Дальневосточного отделения Российской академии наук. 2014. № 5 (177). С. 72–77.
  13. Водяницкий Ю.Н. Минералогия и геохимия марганца (обзор литературы) / Почвоведение. 2009. № 10. С. 1256–1265.
  14. Пальчик Н.А. и др. Состав и структура марганцевых минералов пресного озера Миассово // Журнал неорганической химии. 2014. Т. 59, № 5. С. 681–681.
  15. Каримбекова А.М., Муратов А.С., Джанмулдаева Ж.К. О возможности получения марганецсодержащего удобрения на основе аммофосфата // Научные труды ЮКГУ им. М. Ауэзова. 2016. № 4. С. 41–43.
  16. Рабинович Г.Ю., Любимова Н.А. Биосинтез наночастиц металлов и оксидов металлов и их использование в качестве компонентов удобрений и препаратов для растениеводства (обзор литературы) // Аграрная наука Евро-Северо-Востока. 2021. Т. 22, № 5. С. 627–640.
  17. Бондарева Т.Н., Дмитренко Н.Н., Шеуджен А.X. Влияние воздушно-теплового обогрева и обогащения Мп семян риса на рост, развитие и фотосинтез растений // Агрохимия. 2005. № 10. С. 53–58.
  18. Лебухов В.И., Окара А.И., Павлюченкова Л.П. Физико-химические методы исследования. 2012.
  19. Блинов А.В. и др. Моделирование процессов стабилизации наночастиц MnO2 // В сб.: Актуальные проблемы инженерных наук, 2018. С. 445–446.
  20. Ata M.S., Zhitomirsky I. Electrophoretic nanotechnology of ceramic films // Advances in Applied Ceramics. 2012. Vol. 111, no. 5–6. PP. 345–350.
  21. Alghamdi M.A.G. Biomaterial approaches for Glioblastoma therapeutics: дис. Cardiff University, 2022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Dependence of the average hydrodynamic radius of manganese oxide nanoparticles on variable parameters

Download (102KB)
3. Fig.2. SEM micrographs of nano-sized manganese dioxide stabilized with alkyldimethylbenzylammonium chloride

Download (743KB)
4. Fig.3. X-ray diffraction pattern of nano-sized manganese dioxide stabilized with alkyldimethylbenzylammonium chloride

Download (96KB)
5. Fig.4. Results of modeling the interaction of an alkyldimethylbenzylammonium chloride molecule and manganese oxide through nitrogen: a – model of a molecular complex; b – electron density distribution; c – gradient of electron density distribution; d – highest occupied molecular orbital (HOMO); e – lowest unoccupied molecular orbital (LUMO)

Download (591KB)
6. Fig.5. IR spectra: 1 – MnO2, stabilized with alkyldimethylben- zylammonium chloride, 2 – IR spectrum of alkyldimethylben- zylammonium chloride

Download (60KB)

Copyright (c) 2024 Nagdalian A.A., Blinov A.V., Kravtsov A.A., Zakaeva R.S., Leontev P.S., Taravanov M.A., Senkova A.O.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies