Quartz reference measure for scanning probe microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Improving accuracy and reliability of measurements at the nanoscale is becoming increasingly important for various applications, especially in areas such as semiconductor electronics, optical metamaterials, sensors, and biological measurements. With the development of high-resolution imaging techniques, the need for metrological verification of these devices has also naturally arisen. The challenge of measuring nanoscale morphology at a specific location has emerged, which requires positional accuracy in both vertical and lateral directions. Stability and robustness of measurements require that the microscope should be regularly calibrated using calibration tools. Quartz calibration measures can be one such standard.

Full Text

Restricted Access

About the authors

A. I. Akhmetova

Lomonosov Moscow State University; Advanced Technologies Center Moscow

Author for correspondence.
Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0002-5115-8030

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Moscow; Moscow

T. O. Sovetnikov

Lomonosov Moscow State University; Advanced Technologies Center Moscow

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-6541-8932

Master, Leading Engineer

Russian Federation, Moscow; Moscow

B. A. Loginov

MIET

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-5081-1424

Head of laboratory

Russian Federation, Zelenograd

D. I. Yaminsky

Lomonosov Moscow State University

Email: yaminsky@nanoscopy.ru
ORCID iD: 0009-0009-6370-7496

Post Graduate

Russian Federation, Moscow

I. V. Yaminsky

Lomonosov Moscow State University; Advanced Technologies Center

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-8731-3947

Doct. of Sci. (Physics and Mathematics), Prof., Director

Russian Federation, Moscow; Moscow

References

  1. Binnig G., Quate C.F., Gerber Ch. Atomic force microscope Phys. Rev. Lett. 1986. Vol. 56. PP. 930–933. https://doi.org/10.1016/j.ultramic. 2018.08.011
  2. Li M., Xi N., Wang Yc. et al. Atomic force microscopy for revealing micro/nanoscale mechanics in tumor metastasis: from single cells to microenvironmental cues. Acta Pharmacol Sin 42. 2021. PP. 339–323. https://doi.org/ 10.1038/s41401-020-0494-3
  3. Akhmetova A.I., Yaminsky I.V., Senotrusova S.A. Scanning probe microscopy of biological objects and data processing. Medicine and High Technologies. 2021. Vol. 4. PP. 5–8. https://doi.org/10.34219/2306-3645-2021-11-4-5-8
  4. Ruggeri F.S., Šneideris T., Vendruscolo M., Knowles T.P.J. Atomic force microscopy for single molecule characterisation of protein aggregation. Arch Biochem Biophys. 2019. Mar 30. Vol. 664. PP. 134–148. https://doi.org/ 10.1016/j.abb.2019.02.001
  5. Krieg M., Flaschner G., Alsteens D., Gaub B.M., Roos W.H., Suite G.J.L. et al. Atomic force microscopy-based mechanobiology. Nat Rev Phys. 2019. Vol. 1. PP. 41–57. https://doi.org/10.1038/s42254-018-0001-7
  6. Villarrubia J.S. Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation. J Res Natl Inst Stand Technol. 1997. Vol. 102(4). PP. 425–454. https://doi.org/10.6028/jres.102.030
  7. Электронный источник: FemtoScan Online software http://nanoscopy.ru/software/femtoscan_online
  8. Emerson I.V.R., Camesano T. On the importance of precise calibration techniques for an atomic force microscope. Ultramicroscopy. 2006. Vol. 106. PP. 413–422. https://doi.org/10.1016/j.ultramic.2005.11.008
  9. Dai G., Koenders L., Fluegge J., Bosse H. Two approaches for realizing traceability in nanoscale dimensional metrology. Opt. Eng. 2016. Vol. 55. P. 091407. https://doi.org/10.1117/1.OE.55.9.091407
  10. Certificate of type approval of measuring instruments RU.C.27.004.A № 42471
  11. Loginov A.B., Ismagilov R.R., Bokova-Sirosh S.N., Bozhev I.V., Obraztsova E.D., Loginov B.A., Obraztsov A.N. Formation of nanostructured films based on MoS2, WS2, MoO2 and their heterostructures. Technical Physics. Vol. 92. No. 13. P. 2078. https://doi.org/10.21883/tp. 2022.13.52225.102-21
  12. Akhmetova A.I., Sovetnikov T.O., Maksimova N.E., Terentyev A.D., Uzhegov A.A., Yaminsky I.V. The heart of the capillary microscope. NANOINDUSTRY. 2023. Vol. 16. No. 7–8. PP. 444–448. https://doi.org/10.22184/1993-8578.2023.16.7-8.444.448
  13. Rheinlander J., Schaffer T.E. Image formation, resolution, and height measurement in scanning ion conductance microscopy // J. Appl. Phys. 2009. No. 105. P. 094905. https://doi.org/10.1063/1.3122007

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Image of the calibration measure obtained on a piezoscanner with large hysteresis

Download (24KB)
3. Fig.2. AFM image of the relief measure and measurement of characteristic parameters of the columns: height, period and width at half-height

Download (39KB)
4. Fig.3. SCM image of the relief measure and measurement of characteristic parameters of columns: height, period and width at half-height

Download (42KB)
5. Fig.4. Schematic representation of scanning, black line shows the real surface relief, green line – the received image: a – AFM and b – SCM

Download (12KB)

Copyright (c) 2024 Akhmetova A.I., Sovetnikov T.O., Loginov B.A., Yaminsky D.I., Yaminsky I.V.