Combining nanocalorimetry and atomic force microscopy to study structure formation processes on the nanoscale

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Wide range of rapid analytical methods intended for the physicochemical analysis of organic compounds are being actively developed. The present paper highlights the possibility of studying microquantities of polymer materials using a chip calorimetry (nanocalorimetry) method combined with atomic force microscopy (AFM). An experimental setup is presented for conducting combined studies using ultrafast chip calorimetry and AFM. The main technological aspects of combining the two methods are considered, and behavior of a nanocalorimetric sensor when interacting with a cold AFM cantilever for measurements of microquantities of polymer materials at different temperatures is addressed in situ.

Full Text

Restricted Access

About the authors

A. F. Akhkiamova

Lomonosov Moscow State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS; NUST MISIS

Email: azigy@mail.ru
ORCID iD: 0000-0003-0177-7818

Junior Researcher

Russian Federation, Moscow; Chernogolovka; Moscow

A. F. Abukaev

Lomonosov Moscow State University

Email: azigy@mail.ru
ORCID iD: 0000-0002-7164-5688

Junior Researcher

Russian Federation, Moscow

I. I. Rulev

Lomonosov Moscow State University; NUST MISIS

Email: azigy@mail.ru
ORCID iD: 0009-0000-9652-7680

Junior Researcher

Russian Federation, Moscow; Moscow

A. Y. Konyakhina

Sirius University of Science and Technology

Email: azigy@mail.ru
ORCID iD: 0000-0002-0287-3396

Junior Researcher

Russian Federation, Township Sirius

A. P. Melnikov

Lomonosov Moscow State University

Email: azigy@mail.ru
ORCID iD: 0000-0003-2277-9644

Doct. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Moscow

D. A. Ivanov

Lomonosov Moscow State University; Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, RAS; Sirius University of Science and Technology; NUST MISIS

Author for correspondence.
Email: azigy@mail.ru
ORCID iD: 0000-0002-5905-2652

Doct. of Sci. (Physics and Mathematics), Senior Researcher

Russian Federation, Moscow; Chernogolovka; Township Sirius; Moscow

References

  1. Allen L.H., Ramanath G., Lai S.L., Ma Z., Lee S., Allman D.D.J., Fuchs K.P. 1000000 °C/s thin film electrical heater: In situ resistivity measurements of Al and Ti/Si thin films during ultra-rapid thermal annealing, Appl Phys Lett, 64 (4), 417-419, 1994. https://doi.org/10.1134/S0031918X17060102
  2. Lai S.L., Guo J.Y., Petrova V., Ramanath G., Allen L.H. Size-dependent melting properties of small tin particles: nanocalorimetric measurements, Phys Rev Lett, 1986. Vol. 77 (1), PP. 99-102. https://doi.org/10.1103/PhysRevLett.77.99
  3. Merzlyakov M. Method of rapid (100 000 K.s−1) controlled cooling and heating of thin samples, Thermochim Acta, 2006. Vol. 442. PP. 52–60. https://doi.org/10.1016/j.tca.2005.11.018
  4. Minakov A.A., A.W. van Herwaarden, Wien W., Wurm A., Schick C. Advanced nonadiabatic ultrafast nanocalorimetry and superheating phenomenon in linear polymers, Thermochim Acta, 2007. Vol. 461. PP. 96–106. https://doi.org/10.1016/j.tca.2007.03.020
  5. Ahrenberg M., Shoifet E., Whitaker K.R., Huth H., Ediger M.D., Schick C. Differential alternating current chip calorimeter for in situ investigation of vapor-deposited thin films, Rev Sci Instrum, 2012. Vol. 83:033902. https://doi.org/10.1063/1.3692742
  6. Donald W.A., Leib R.D., O’Brien J.T., Holm A.I.S., Williams E.R. Nanocalorimetry in mass spectrometry: a route to understanding ion and electron solvation, Proc Natl Acad Sci, 2008. Vol. 105 (47). PP. 18102–18107. https://doi.org/10.1073/pnas.0801549105
  7. Bersenev E.A., Maryasevskaya A.V., Komov E.V., Anokhin D.V., Ivanov D.A. Exploring the Complexation of Counterion in Novel Family of Polyelectrolytes with Unexpected Solubility Behaviour, Key Eng Mat, 2020. Vol. 869. PP. 61–68. https://doi.org/10.4028/www.scientific.net/KEM.869.61
  8. M. van Drongelen, Meijer-Vissers T., Cavallo D., Portale G., Androsch R. Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter, Thermochim Acta, 2013. Vol. 563. PP. 33–37. https://doi.org/10.1016/j.tca.2013.04.007
  9. Baeten D., Mathot V.B.F., Pijpers T.F.J., Verkinderen O., Portale G., Puyvelde P., Goderis B. Simultaneous synchrotron WAXD and fast scanning (Chip) Calorimetry: on the Isothermal crystallization of HDPE and PA11 at high supercoolings and cooling rates up to 200 °C·s–1, Macromol Rapid Commun. Vol. 36. PP. 1184–1191. https://doi.org/10.1002/marc. 201500081
  10. Melnikov A.P., Rosenthal M., Ivanov D.A. What Thermal Analysis Can Tell Us About Melting of Semicrystalline Polymers: Exploring the General Validity of the Technique, ACS Macro Lett. 2018. Vol. 7 (12). PP. 1426–1431. https://doi.org/10.1021/acsmacrolett.8b00754
  11. Doblas D., Rosenthal M., Burghammer M., Chernyshov D., Spitzer D., Ivanov D. Smart Energetic Nano-Sized Co-Crystals: Exploring Fast Structure Formation and Decomposition, Crystal Growth and Design. 2015. Vol. 16. https://doi.org/10.1021/acs.cgd.5b01425
  12. Rosenthal M., Melnikov A.P., Burghammer M., Ivanov D.A. Reorganization of semicrystalline polymers on heating: Analyzing common misconceptions in the interpretation of calorimetric data. Response on the "Comment on "Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nanofocus X-ray scattering and nanocalorimetry" by Dimitri A. Ivanov et al. [Euro. Polym. J. 81. 2016. PP. 598–606], Eur Polym J. 2017. Vol. 94. PP. 517–543. https://doi.org/10.1016/j.eurpolymj.2017.06.036
  13. Odarchenko Y., Rosenthal M., Hernandez J., Doblas D., Di Cola E., Soloviev M., Ivanov D. Assessing Fast Structure Formation Processes in Isotactic Poly- propylene with a Combination of Nanofocus X-ray Diffraction and In Situ Nanocalorimetry, Nanomaterials. 2021. Vol. 11. P. 2652. https://doi.org/10.3390/nano11102652
  14. Яминский И.В., Иванов Д.А., Ахметова А.И., Максимова Н.Е., Мельников А.П., Ахкямова А.Ф. Измерение структуры и теплофизических характеристик образцов с помощью совмещенной атомно-силовой микроскопии и нанокалориметрии. НАНОИНДУСТРИЯ. 2022. Т. 15. № 7–8. C. 418–425. https://doi.org/10.22184/1993-8578.2022.15.7-8.418.425
  15. Rosenthal M., Doblas D., Hernandez J.J., Odarchenko Y.I., Burghammer M., Di Cola E., Spitzer D., Antipov A.E., Aldoshin L.S., Ivanov D.A. High-resolution thermal imaging with a combination of nano-focus X-ray diffraction and ultra-fast chip calorimetry, J Synchrotron Radiat. 2014. Vol. 21. PP. 223–228. https://doi.org/10.1107/S1600577513024892
  16. Liu Y., Sun Z.Y., An L.J. The study of banded spherulite patterns by coupled logistic map lattice model. Eur. Phys. J. B. 2008. Vol. 62. PP. 481–484. https://doi.org/10.1140/epjb/e2008-00179-8
  17. Ivanov D., Magonov S. Atomic Force Microscopy Studies of Semicrystalline Polymers at Variable Temperature. 2008. https://doi.org/10.1007/3-540-45851-4_7
  18. Ivanov D., Bar G., Dosière M., Koch M.H.J. A Novel View on Crystallization and Melting of Semirigid Chain Polymers: The Case of Poly(trimethylene terephthalate) Macromolecules. 2008. Vol. 41 (23). PP. 9224–9233. https://doi.org/10.1021/ma801604a

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. General view of the universal holder with nanocalorimetric sensor

Download (26KB)
3. Fig.2. Procedure of particle entrapment by keratin fibre keratin fibre procedure

Download (16KB)
4. Fig.3. View of the AFM control head directly above nanocalorimetric sensor active zone (a). Optical image of the nanocalorimetric sensor combined active zone and AFM cantilever (b)

Download (42KB)
5. Fig.4. Plots of the temperature spike of the sensor, in real time, when the cantilever is introduced into the system at temperatures of 50 °C, 100 °C, 150 °C and 200 °C

Download (17KB)
6. Fig.5. Graph of temperature spike dependence on the sensor when introducing a cantilever as a function of active area temperature of the sensor

Download (20KB)
7. Fig.6. AFM images of surface topography of nanocalorimetric sensor active area at 50 °C (left) and 200 °C (right)

Download (84KB)
8. Fig.7. AFM image of an isothermally crystallised poly(trimethylene terephthalate) sample crystallised at 210 °C at the nanocalorimetric sensor temperature of 200 °C

Download (38KB)

Copyright (c) 2024 Akhkiamova A.F., Abukaev A.F., Rulev I.I., Konyakhina A.Y., Melnikov A.P., Ivanov D.A.