Technology for producing silk fibroin and structures based on it for wearable electronics products

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Silk fibroin biopolymer is one of the promising materials for organic electronics. It is characterized by optical transparency, thermal stability sufficient for proteins, biocompatibility and high tensile strength. Silk fibroin-based structures can be used to manufacture sensor elements of wearable electronics. Their properties are determined by the conformation of the protein structure, which depends on the methods and modes of formation of regenerated fibroin from its native form. In this project, a process for the formation of silk fibroin solution, films and photonic crystal structures based on them was developed.

Full Text

Restricted Access

About the authors

E. V. Panfilova

Bauman Moscow State Technical University (National Research university)

Author for correspondence.
Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0001-7944-2765

Cand. of Sci. (Tech), Docent

Russian Federation, Moscow

K. V. Mozer

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0001-9689-1837

Assistant

Russian Federation, Moscow

A. A. Maltsev

Emanuel Institute of Biochemical Physics of RAS

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0002-5378-174X

Researcher

Russian Federation, Moscow

References

  1. Stoppa M., Chiolerio A. Wearable electronics and smart textiles: A critical review. Sensors. 2014. Vol. 14. No. 7. PP. 11957–11992.
  2. Das R., He X., Ghaffarzadeh K. Flexible, Printed and Organic Electronics 2020–2030: Forecasts, Technologies, Markets: Market Data and Technology and Application Appraisal: Providing the Complete Picture. IDTechEx. 2020.
  3. Koh L.D. et al. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science. 2015. Vol. 46. PP. 86–110.
  4. Sashina E.S. et al. Structure and solubility of natural silk fibroin. Russian journal of applied chemistry. 2006. Vol. 79. PP. 869–876.
  5. Сашина Е.С., Новоселов Н.П. Конформационные изменения фиброина при растворении его в гексафторизопропаноле. Высокомолекулярные соединения. Серия А. 2005. Т. 47. № 10.
  6. Агапова О.И. Биоинженерные конструкции на основе фиброина шелка и спидроина для регенеративной медицины и тканевой инженерии (обзор). Современные технологии в медицине. 2017. Т. 9. № 2. С. 190–206.
  7. Bucciarelli A. et al. A comparative study of the refractive index of silk protein thin films towards biomaterial based optical devices. Optical Materials. 2018. Vol. 78. PP. 407–414.
  8. Xu Z. et al. Flexible, biocompatible, degradable silk fibroin based display. Chemical Engineering Journal. 2023. Vol. 464. P. 142477.
  9. Fu F., Liu D., Wu Y. Silk-based conductive materials for smart biointerfaces. Smart Medicine. 2023. Vol. 2. No. 2. P. e20230004.
  10. Guidetti G., Wang Y., Omenetto F.G. Active optics with silk: Silk structural changes as enablers of active optical devices. Nanophotonics. 2020. Vol. 10. No. 1. PP. 137–148.
  11. Shi C. et al. New silk road: from mesoscopic reconstruction/functionalization to flexible meso-electronics/photonics based on cocoon silk materials. Advanced Materials. 2021. Vol. 33. No. 50. P. 2005910.
  12. Yang N. et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform. ACS applied materials & interfaces. 2019. Vol. 11. No. 26. PP. 23632–23638.
  13. Prajzler V. et al. All-polymer silk-fibroin optical planar waveguides. Optical Materials. 2021. Vol. 114. P. 110932.
  14. He W. et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Science advances. 2019. Vol. 5. No. 11. P. eaax0649.
  15. Zheng Y. et al. A flexible humidity sensor based on natural biocompatible silk fibroin films. Advanced Materials Technologies. 2021. Vol. 6. No. 1. P. 2001053.
  16. Wang Y. et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proceedings of the National Academy of Sciences. 2019. Vol. 116. No. 43. PP. 21361–21368.
  17. Wang Y. et al. Modulation of multiscale 3D lattices through conformational control: painting silk inverse opals with water and light. Advanced Materials. 2017. Vol. 29. No. 38. P. 1702769.
  18. Mozer K.V., Panfilova E.V. Modeling and uncertainty of measurement the deformation of a flexible photonic crystal structure. AIP Conference Proceedings. AIP Publishing. 2023. Vol. 2833. No. 1.
  19. Wang R. et al. Degumming of raw silk via steam treatment. Journal of Cleaner Production. 2018. Vol. 203. PP. 492–497.
  20. Partlow B.P. et al. Silk fibroin degradation related to rheological and mechanical properties. Macromolecular bioscience. 2016. Vol. 16. No. 5. PP. 666–675.
  21. Sah M.K., Pramanik K. Regenerated silk fibroin from B. mori silkcocoon for tissue engineering applications. International journal of environmental science and development. 2010. Vol. 1. No. 5. P. 404.
  22. Mhuka V. et al. Fabrication and structural characterization of electrospun nanofibres from Gonometa Postica and Gonometa Rufobrunnae regenerated silk fibroin. Macromolecular Research. 2013. Vol. 21. No. 9. PP. 995–1003.
  23. Ориентационное структурообразование фиброина шелка с анизотропными свойствами в растворах: дис. . канд./д-ра физ. мат. наук. Институт хим. и физ. полимеров Академии наук Республики Узбекистан, Ташкент, 2008.
  24. Zhang M., Weng Y.J., Zhang Y.Q. Accelerated desalting and purification of silk fibroin in a CaCl²-EtOH-H2O ternary system by excess isopropanol extraction. Journal of Chemical Technology & Biotechnology. 2021. Vol. 96. No. 5. PP. 1176–1186.
  25. Li S. et al. Microwave-assisted fast and efficient dissolution of silkworm silk for constructing fibroin-based biomaterials. Chemical Engineering Science. 2018. Vol. 189. PP. 286–295.
  26. Cheng G. et al. Differences in regenerated silk fibroin prepared with different solvent systems: From structures to conformational changes. Journal of Applied Polymer Science. 2015. Vol. 132. No. 22.
  27. Shen T. et al. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure. International journal of biological macromolecules. 2018. Vol. 113. PP. 458–463.
  28. Medronho B. et al. Silk fibroin dissolution in tetrabutylammonium hydroxide aqueous solution. Biomacromolecules. 2019. Vol. 20. No. 11. PP. 4107–4116.
  29. Zhu Z.H., Ohgo K., Asakura T. Preparation and characterization of regenerated Bombyx mori silk fibroin fiber with high strength. Express Polym Lett. 2008. Vol. 12. No. 2. PP. 885–889.
  30. Phillips D.M. et al. Dissolution and regeneration of Bombyx mori silk fibroin using ionic liquids. Journal of the American chemical society. 2004. Vol. 126. No. 44. PP. 14350–14351.
  31. Mantz R.A. et al. Dissolution of biopolymers using ionic liquids. Zeitschrift für Naturforschung A. 2007. Vol. 62. No. 5–6. PP. 275–280.
  32. Wang C. et al. Silk-based advanced materials for soft electronics. Accounts of Chemical Research. 2019. Vol. 52. No. 10. PP. 2916–2927.
  33. Lu Q. et al. Silk self-assembly mechanisms and control from thermodynamics to kinetics. Biomacromolecules. 2012. Vol. 13. No. 3. PP. 826–832.
  34. Hu X. et al. Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules. 2011. Vol. 12. No. 5. PP. 1686–1696.
  35. Бартенев Г.М., Френкель С.Я. Физика полимеров. Химия. 1990. P. 432.
  36. Yun H. et al. Stencil nano lithography based on a nanoscale polymer shadow mask: Towards organic nanoelectronics. Scientific reports. 2015. Vol. 5. No. 1. P. 10220.
  37. Brown J.E. et al. Thermal and structural properties of silk biomaterials plasticized by glycerol. Biomacromolecules. 2016. Vol. 17. No. 12. PP. 3911–3921.
  38. Tran H.A. et al. Emerging silk fibroin materials and their applications: new functionality arising from innovations in silk crosslinking. Materials Today. 2023. Vol. 65. PP. 244–259.
  39. Yao Y. et al. Spinning regenerated silk fibers with improved toughness by plasticizing with low molecular weight silk. Biomacromolecules. 2020. Vol. 22. No. 2. PP. 788–799.
  40. Панфилова Е.В., Дюбанов В.А., Ибрагимов А.Р., Шрамко Д.Ю. Лабораторный комплекс для получения коллоидных фотонно-кристаллических структур. Часть 1. НАНОИНДУСТРИЯ. 2024. Т. 17. № 3–4. C. 190–199. https://doi.org/10.22184/1993-8578.2024.17.3-4.190.198.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Silk fibroin

Download (60KB)
3. Fig.2. Primary structure of the fibroin heavy chain

Download (64KB)
4. Fig.3. Fibroin-based structures: a – hydrogels; b – nanofibers; c – particles; d – films; e – sponges

Download (132KB)
5. Fig.4. Measurement of longitudinal deformations using a photonic crystal film of fibroin: a – change in the position of the photonic band gap; b – deformation of the structure

Download (118KB)
6. Fig.5. Technology for obtaining an aqueous fibroin solution: a – preparation; b – purification; c – washing; d – dissolution; e – dialysis; f – centrifugation

Download (120KB)
7. Fig.6. Effect of external influences on the structure of fibroin films

Download (261KB)
8. Fig.7. The process of forming a silk fibroin solution: а – degumming stage; b…f – dissolution stage over time, t; g – dialysis stage; h – prepared solution

Download (279KB)
9. Fig.8. IR spectrometry results: a – sample no. 2; b – sample no. 7

Download (402KB)
10. Fig.9. Reflectance spectra of photonic crystal structures: a – the original photonic crystal formed from silicon dioxide microspheres with a diameter of 280 nm; b – composite structure

Download (351KB)

Copyright (c) 2025 Panfilova E.V., Mozer K.V., Maltsev A.A.