Mechanical properties study of amorphous Co-alloy 84KHSR variable diameter wire by instrumental indentation method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The study of spatial distribution of mechanical properties in a "thick" amorphous wire of Co-alloy 84KHSR has been carried out. A cone sample of amorphous wire of variable diameter (70–300 μm) was obtained by the Ulitovsky-Taylor method by varying the drawing speed during the wire production process. After removing the glass sheath and checking for the conformity of the wire structure to the amorphous state, the mechanical properties of the cone wire samples with diameters of 100 and 270 μm were studied by the instrumental indentation method. It was found that amorphous wire in the range of diameters 70–300 μm retains stable values of hardness and modulus of elasticity in cross and longitudinal sections. Mechanical properties of wires of the studied diameters also practically do not change when moving from the center of the samples to the edge. The obtained data indicate high isotropy of the amorphous structure of the wire of variable diameter. The noted higher values of hardness and modulus of elasticity in the 270 µm diameter sample (Н = 9,8 GPa, Е = 212 GPa) compared to the 100 µm diameter sample (Н = 8,6 GPa, Е = 163 GPa) may be due to a more intensive formation of the cluster structure due to a decrease in the effective cooling rate of the "thicker" wire. It was noted that such wires may find application in the manufacture of new types of medical instruments.

Full Text

Restricted Access

About the authors

E. V. Gladkikh

National Research Center "Kurchatov Institute" – Technological Institute for Superhard and Novel Carbon Materials

Email: useinov@mail.ru
ORCID iD: 0000-0001-8273-3934

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Troitsk, Moscow

G. K. Sultanova

National Research Center "Kurchatov Institute" – Technological Institute for Superhard and Novel Carbon Materials; Federal State Autonomous Educational Institution of Higher Education "Moscow Institute of Physics and Technology (National Research University)"

Email: useinov@mail.ru
ORCID iD: 0000-0002-4770-5724

Junior Researcher

Russian Federation, Troitsk, Moscow; Dolgoprudny

A. A. Rusakov

National Research Center "Kurchatov Institute" – Technological Institute for Superhard and Novel Carbon Materials

Email: useinov@mail.ru
ORCID iD: 0000-0001-5702-1353

Junior Researcher

Russian Federation, Troitsk, Moscow

A. S. Useinov

Federal State Institution of Science Institute for High Pressure Physics of the Russian Academy of Sciences

Author for correspondence.
Email: useinov@mail.ru
ORCID iD: 0000-0002-9937-0954

Cand. of Sci. (Physics and Mathematics), Deputy Director

Russian Federation, Troitsk, Moscow

V. V. Molokanov

Federal State Institution of Science Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences (Baikov IMET RAS)

Email: useinov@mail.ru
ORCID iD: 0000-0003-4664-463X

Cand. of Sci. (Tech), Leading Researcher

Russian Federation, Moscow

A. V. Krutilin

Federal State Institution of Science Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences (Baikov IMET RAS)

Email: useinov@mail.ru
ORCID iD: 0000-0003-4223-6890

Junior Researcher

Russian Federation, Moscow

N. A. Palii

Federal State Institution of Science Baikov Institute of Metallurgy and Materials Science of Russian Academy of Sciences (Baikov IMET RAS)

Email: useinov@mail.ru
ORCID iD: 0000-0002-1334-6014

Senior Researcher

Russian Federation, Moscow

References

  1. Qin F., Peng H.X. Ferromagnetic microwires enabled multifunctional composite materials // Progress in Materials Science. 2013. V. 58. No. 2. PP. 183–259.
  2. Vazquez M. Advanced magnetic microwires // Handbook of Magnetism and Advanced Magnetic Materials, 2007.
  3. Panina L., Dzhumazoda A., Nematov M. et al. Soft magnetic amorphous microwires for stress and temperature sensory applications // Sensors. 2019. Vol. 19. No. 23. P. 5089.
  4. Molokanov V.V., Moroz O.V., Krutilin A.V. et al. Fabrication and physicomechanical properties of amorphous microwires and microspirals // Russian Metallurgy (Metally). 2022. Vol. 2022. No. 4. PP. 300–308.
  5. Kostitsyna E.V., Gudoshnikov S.A., Popova A.V. et al. Mechanical properties and internal quenching stresses in Co-rich amorphous ferromagnetic microwires // Journal of Alloys and Compounds. 2017. Vol. 707. PP. 199–204.
  6. Ulitovsky A.V., Malanski I.M., Avramenco A.I. Method of continuous casting of glass coated microwire. Patent No. 128427 (USSR). 15.05.60. Bulletin, 10. P. 14.
  7. Molokanov V.V., Shalygin A.N., Umnov P.P. et.al. Conditions for obtaining "thick" amorphous wires by the Ulitovsky–Taylor method // Inorganic Materials: Applied Research. 2019. Vol. 10. PP. 463–466.
  8. Алпатов А.А., Молоканов В.В., Крутилин А.В. и др. Протяженные тензорезистивные датчики на основе аморфных микропроводов для контроля состояния конструкций и сооружений // Безопасность и мониторинг природных и техногенных систем. 2023. С. 95–98.
  9. Zhukova V., Corte León P., Blanco Aranguren J.M. et al. Development of magnetically soft amorphous microwires for technological applications // Chemosensors. 2022. Vol. 10. No. 1.
  10. Гудошников С.А., Попова А.В., Фатеев В.М. и др. Датчик измерения механических деформаций. RU 2552124 C1. Опубликовано: 10.06.2015. Бюл. № 16.
  11. Аксенов О.И., Аксенов А.А., Аронин А.С. Датчик измерения механических напряжений на основе микропроводов с положительной магнитострикцией. RU 2746765 C1. Опубликовано: 20.04.2021. Бюл. № 11.
  12. Молоканов В.В., Алпатов А.А., Крутилин А.В. и др. Мониторинг состояния авиационно-космической техники с использованием тензодатчиков на основе аморфных ферромагнитных микропроводов // Сб. тезисов Международного аэрокосмического конгресса по аэронавтике, 2023. С. 132–134.
  13. Молоканов В.В., Дубов А.А., Ямчук А.В. и др. Анализ дефектов литых стержней околоэвтектического Cо-сплава до и после зонной плавки // Электрометаллургия. 2024. № 1. С. 16–23.
  14. Коплак О.В., Дворецкая Е.В., Кравчук К.С. и др. Морфология и механические свойства микропроводов PrDyFeCoB // Физика твердого тела. 2020. Т. 62. № 12. С. 2026–33.
  15. Усеинов А.С., Кравчук К.С., Гладких Е.В. и др. Измерение механических свойств методом инструментального индентирования в широком диапазоне температур // НАНОИНДУСТРИЯ. 2021. Т. 14. № 2. С. 108–116. https://doi.org/10.22184/1993-8578.2021.14.2.108.116
  16. BS EN ISO 14577: 2015. Metallic materials. Instrumented indentation test for hardness and materials parameters.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Grid view of indenter imprints on a 270 µm diameter amorphous wire sample cut of 84KHSR alloy and hardness and elastic modulus values distribution from left to right along the X coordinate: a – cross cut; b – longitudinal cut

Download (512KB)
3. Fig.2. Grid view of indenter imprints on a cross cut of a 100 µm diameter amorphous wire sample of 84KHSR alloy (a), hardness values distribution as a function of the radius-vector length (b), elastic modulus values distribution as a function of the radius-vector length (c)

Download (268KB)
4. Fig.3. Diagram of hardness and modulus of elasticity obtained values on wires with a 270 μm and 100 μm diameter, located across (V) or along (L) the axis of the wire

Download (117KB)

Copyright (c) 2025 Gladkikh E.V., Sultanova G.K., Rusakov A.A., Useinov A.S., Molokanov V.V., Krutilin A.V., Palii N.A.