Morphological surface analysis of spin gapless CoFeMnSᵢ semiconductor thin films grown by pulsed laser deposition
- Authors: Uskov F.A.1, Veryuzskii I.V.1
-
Affiliations:
- National Research University of Electronic Technology
- Issue: Vol 18, No 1 (2025)
- Pages: 48-58
- Section: Nanotechnologies
- URL: https://journals.eco-vector.com/1993-8578/article/view/679888
- DOI: https://doi.org/10.22184/1993-8578.2025.18.1.48.58
- ID: 679888
Cite item
Abstract
CoFeMnSi spin gapless semiconductor thin films were grown on a (100) oriented MgO substrate by pulsed laser deposition. In this work, we explored the dependence of CoFeMnSi thin film’s surface morphology on different parameters of growth process. It was shown that an island-like CoFeMnSi thin film with an average grain diameter of D50% = 16.48 nm and roughness parameters Ra = 1.29 nm, Rz = 13.06 nm grows on a (100) oriented MgO substrate if a laser pulse frequency is 1–2 Hz and a pulse energy is 150 mJ. Reducing the frequency of laser pulses to 0.5 Hz with the same pulse energy led to a change in the film growth mechanism to a mixed growth. The film initially grows in the layer-by-layer mode and then 3D islands gradually form. Roughness parameters of the films deposited in this mode decrease to Ra = 0.61 nm and Rz = 11.51 nm. It became possible to implement layer-by-layer film deposition mode by introducing time pauses of 1–2 minutes between the depositions of each CoFeMnSi atomic layer. We found out that the layer-by-layer grown films had solid structure, defects and irregularities of their surface microrelief were smoothed out. The roughness parameters of the samples grown in the layer-by-layer mode decreased to Ra = 0.31 nm and Rz = 4.60 nm. The production of CoFeMnSi thin films with high quality of surface opens up opportunities for fabrication of CoFeMnSi-based heterostructures. With the selected technological parameters of growth process we fabricated MgO/CoFeMnSi/Co thin film with average surface roughness of Ra = 0.17 nm using selected above technological parameters of growth process. The results of this work can be used in fabrication of multilayer structures based on CoFeMnSi and their application in spintronic devices.
Full Text

About the authors
F. A. Uskov
National Research University of Electronic Technology
Email: vervan2005@mail.ru
ORCID iD: 0009-0009-6269-9009
Postgraduate, Junior Researcher
Russian Federation, MoscowI. V. Veryuzskii
National Research University of Electronic Technology
Author for correspondence.
Email: vervan2005@mail.ru
ORCID iD: 0009-0007-6062-7744
Cand. of Sci. (Tech), Senior Researcher
Russian Federation, MoscowReferences
- Rani D., Bainsla L., Alam A., Suresh K.G. Spin–gapless semiconductors: Fundamental and applied aspects // J. Appl. Phys. 2020. Issue 128. P. 220902. https://doi.org/10.1063/5.0028918
- Bainsla L., Mallick A.I., Manivel Raja M. et al. Spin gapless semiconducting behavior in equiatomic quaternary CoFeMnSi Heusler alloy // PHYSICAL REVIEW. 2015. Vol. 91. Issue 10. P. 104408. https://doi.org/10.1103/PhysRevB.91. 104408
- Mishra V., Barwal V., Pandey L., Gupta N.K. et al. Investigation of spin gapless semiconducting behavior in quaternary CoFeMnSi Heusler alloy thin films on Si (100) // Journal of Magnetism and Magnetic materials. 2022. Vol. 547. P. 168837. https://doi.org/10.1016/j.jmmm.2021.168837
- Fecher G.H. et al. Electronic, structural, and magnetic properties of the half-metallic ferromagnetic quaternary Heusler compounds CoFeMnZ (Z = Al, Ga, Si, Ge) // Physical Review B. 2011. Vol. 84. Issue 22. P. 224416. https://doi.org/10.1103/PhysRevB.84.224416
- Kushwaha Varun K., Rani J. et al. Possible spin gapless semiconductor type behaviour in CoFeMnSi epitaxial thin films // Appl. Phys. Lett. 2017. Issue 111. P. 152407. https://doi.org/10.1063/1.4996639
- Фетисов Ю.К., Сигов А.С. Спинтроника: физические основы и устройства / РЭНСИТ. 2018. Т. 10. № 3. С. 343–356. https://doi.org/10.17725/rensit.2018.10.343
- Bainsla L., Suzuki K.Z., Tsujikawa M. et al. Magnetic tunnel junctions with an equiatomic quaternary CoFeMnSi Heusler alloy electrode // Appl. Phys. Lett. 2018. Issue 112. P. 052403. https://doi.org/10.1063/1.5002763
- Bainsla L. et al. Low magnetic damping for equiatomic CoFeMnSi Heusler alloy // Journal of Physics D: Applied Physics. 2018. Vol. 51. Issue 49. P. 495001. https://doi.org/10.1088/1361-6463/aae4ef
- Feng Y. et al. Structural stability, half–metallicity and magnetism of the CoFeMnSi/GaAs(001) interface // Applied Surface Science. 2015. Vol 346. P. 1. https://doi.org/10.1016/j.apsusc. 2015.01.143
- Верюжский И.В., Приходько А.С., Усков Ф.А., Григорашвили Ю.Е., Боргардт Н.И. Формирование монокристаллических пленок сплава Гейслера на основе соединения CоFeMnSi на подложке MgO. Письма в ЖТФ. 2024. Т. 50. В. 22. С. 61–64.
- Верюжский И.В., Приходько А.С., Усков Ф.А., Григорашвили Ю.Е., Боргардт Н.И. Импульсное лазерное осаждение монокристаллических пленок сплава Гейслера CoFeMnSi на подложке MgO. Известия Высших Учебных Заведений. Электроника. 2024. Т. 29. В. 6. С. 703–714.
- Логинов Б.А., Логинов П.Б., Логинов В.Б., Логинов А.Б. Зондовая микроскопия: применения и рекомендации по разработке. НАНОИНДУСТРИЯ. 2019. № 6. C. 352–365. https://doi.org/10.22184/1993-8578.2019.12.6.366.369
- Venables J. Introduction to surface and thin film processes // Cambridge university press. 2000. PP. 144–181. https://doi.org/10.1017/CBO9780511755651.009
- Li J., Peng W., Chen K. et al. Growth and in situ high–pressure reflection high energy electron diffraction monitoring of oxide thin films // Journal of Physics, Mechanics and Astronomy. 2013. Vol. 56. PP. 2312–2326. https://doi.org/10.1007/s11433-013-5352-6
- Baskaran A., Smereka P. Mechanisms of Stranski-Krastanov growth // Journal of Applied Physics. 2012. Vol. 111. P. 044321. https://doi.org/10.1063/1.3679068
- Шугуров А.Р., Панин А.В. Механизмы возникновения напряжений в тонких пленках и покрытиях // Журнал технической физики. 2020. Т. 90. В. 12. С. 1971–1994. https://doi.org/10.21883/jtf.2020.12.50417.38–20
- Jan van der Merwe. Epitaxy and the computer age // Journal of Materials Research. 2017. Vol. 32. PP. 3921–3923. https://doi.org/10.1557/jmr.2017.426
- Григорашвили Ю.Е., Верюжский И.В., Усков Ф.А. Патент № 2818990 Способ изготовления монокристаллического тонкопленочного многокомпонентного полупроводника.
Supplementary files
