Research and development of magnesium alloy Mg-1%Zn-0.06%Ca for application in medicine

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Biodegradable and biocompatible magnesium alloy materials show a promising future in medical applications and are currently the subject of active research. This paper presents the results of using combined thermomechanical processing by means of equal-channel angular pressing (ECAP) and subsequent extrusion, to produce the long-sized rods from magnesium alloy Mg-1%Zn-0.06%Ca with an ultrafine-grained structure and enhanced mechanical properties. The thermomechanical conditions have been determined through the use of computer modeling, with specific attention paid to intervals of strain rates, the degree of deformation, and the stress-strain state during the ECAP and extrusion processes. An experimental deformation was conducted, and the structure of the rods obtained through combined processing was investigated. The results demonstrate that the combined processing of the initial homogenized alloy, comprising ECAP and subsequent extrusion, enabled the formation of UFG structure with a grain size of approximately 1 µm and the creation of nano-sized particles, which led to a significant increase in the mechanical properties of the alloy in the rod-shaped samples intended for the manufacture of promising implants in maxillofacial surgery.

Full Text

Restricted Access

About the authors

A. V. Botkin

Ufa University of Science and Technology

Email: ruslan.valiev@ugatu.su
ORCID iD: 0000-0001-9522-280X

Doct. of Sci. (Tech), Prof.

Russian Federation, Ufa

E. P. Volkova

Ufa University of Science and Technology

Email: ruslan.valiev@ugatu.su
ORCID iD: 0009-0004-7183-4077

Junior Researcher

Russian Federation, Ufa

G. D. Khudododova

Ufa University of Science and Technology

Email: ruslan.valiev@ugatu.su
ORCID iD: 0000-0002-1273-8518

Junior Researcher

Russian Federation, Ufa

O. B. Kulyasova

Ufa University of Science and Technology

Email: ruslan.valiev@ugatu.su
ORCID iD: 0000-0002-1761-336X

Cand. of Sci. (Tech), Docent

Russian Federation, Ufa

R. K. Islamgaliev

Ufa University of Science and Technology

Email: ruslan.valiev@ugatu.su
ORCID iD: 0000-0002-6234-7363

Doct. of Sci. (Physics and Mathematics), Prof.

Russian Federation, Ufa

R. Z. Valiev

Ufa University of Science and Technology

Author for correspondence.
Email: ruslan.valiev@ugatu.su
ORCID iD: 0000-0003-4340-4067

Doct. of Sci. (Physics and Mathematics), Prof., Director

Russian Federation, Ufa

References

  1. Ratner B.D., Hoffman A.S., Schoen F.J., Lemons J.E. Biomaterial sciences: An introduction to materials in medicine. San Diego, Academic. 1996. Press. P. 1.
  2. Zheng Y., Gu X., Witte F. Biodegradable metals. Mater. Sci. Eng. R Rep. 2014. Vol. 77. PP. 1–34.
  3. Denkena B., Lucas A. Biocompatible magnesium alloys as absorbable implant materials -adjusted surface and subsurface properties by machining processes / Cirp Annals, Manufacturing Technology. 2007. Vol. 56. Iss. 1. PP. 113–116.
  4. Mani G., Feldman M.D., Patel D., Agrawal C.M. Coronary stents: A materials perspective. Biomaterials. 2007. Vol. 28. Iss. 9. PP. 1689–1710.
  5. Witte F. The history of biodegradable magnesium implants: a review. Acta biomaterialia. 2010. Vol. 6. No. 5. PP. 1680–1692.
  6. Zhao D., Witte F., Lu F., Wang J., Li J., Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials. 2017. Vol. 112. PP. 287–302.
  7. Tapiero H., Tew K.D. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy. 2003. Vol. 57. Iss. 9. PP. 399–411.
  8. Song G.L. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science. 2007. Vol. 49. Iss. 4. PP. 1696–1701.
  9. Vinogradov A., Merson E., Myagkikh P., Linderov M., Brilevsky A., Merson D. Attaining High Functional Performance in Biodegradable Mg-Alloys: An Overview of Challenges and Prospects for the Mg-Zn-Ca System. Materials. 2023. Vol. 16. P. 1324.
  10. Sun Y., Zhang B., Wang Y., Geng L., Jiao X. Preparation and characterization of a new biomedical Mg-Zn-Ca alloy. Materials and Design. 2012. Vol. 34. PP. 58–64.
  11. Rezaei-Baravati A., Kasiri-Asgarani M., Bakhsheshi-Rad H.R. et al. Microstructure, Biodegradation, and Mechanical Properties of Biodegradable Mg-Based Alloy Containing Calcium for Biomedical Applications. Phys Mesomech. 2023. Vol. 26. PP. 176–195.
  12. Валиев Р.З., Жиляев А.П., Лэнгдон Т.Дж. Объемные наноструктурные материалы: фундаментальные основы и применения. СПб, 2017.
  13. Abdi M., Ebrahimi R. Microstructure Evolution of AZ91 Alloy Processed by Twin Parallel Channel Angular Extrusion Technique. J. of Materi Eng and Perform. 2022. Vol. 31. PP. 5358–5373.
  14. Medeiros M.P., Lopes D.R., Kawasaki M., Langdon T.G., Figueiredo R.B. An Overview on Effect of Severe Plastic Deformation on the Performance of Magnesium for Biomedical Applications. Materials. 2023. Vol. 16. P. 2401.
  15. Martynenko N.S., Anisimova N.Y., Rybalchenko O.V., Kiselevskiy M.V., Rybalchenko G., Straumal B., Temralieva D., Mansharipova A.T., Kabiyeva A.O., Gabdullin M.T. et al. Rationale for Processing of a Mg-Zn-Ca Alloy by Equal-Channel Angular Pressing for Use in Biodegradable Implants for Osteoreconstruction. Crystals. 2021. Vol. 11. P. 1381.
  16. Tong L.B., Zheng M.Y., Cheng L.R., Zhang D.P., Kamado S., Meng J., Zhang H.J. Influence of deformation rate on microstructure, texture and mechanical properties of indirect extruded Mg–Zn–Ca alloy. Mater. Charact. 2015. Vol. 104. PP. 66–72.
  17. Боткин А.В., Валиев Р.З., Волкова Е.П., Худододова Г.Д., Ebrahimi R. Влияние предварительной деформации на формирование ультрамелкозернистой структуры при РКУП-обработке магниевых сплавов. Физическая мезомеханика. 2024. Т. 27. № 4. С. 63–72.
  18. Utyashev F.Z., Beygelzimer Y.E., Valiev R.Z. Large and Severe Plastic Deformation of Metals: Similarities and Differences in Flow Mechanics and Structure Formation. Advanced Engineering Materials. 2021. Vol. 23. No. 7.
  19. Богатов А.А., Мижирицкий О.И., Смирнов С.В. Ресурс пластичности металлов при обработке давлением. М.: Металлургия. 1984, 144 c.
  20. Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: получение, структура и свойства. М.: Академкнига, 2007.
  21. Кулясова О.Б., Исламгалиев Р.К. Влияние структурных изменений на механические свойства сплава Mg-1%Zn-0,2%Ca, полученного методом равноканального углового прессования. Вестник Уфимского государственного авиационного технического университета. 2018. Т. 22. Вып. 81. № 3. С. 24–29.
  22. Ivanov A.M. Uniformly channel angular pressing and extrusion of low-alloy steel. Natural resources of Arctic and Subarctic. 2018. Vol. 23. No. 1. PP. 60–66.
  23. Матчин А.А., Клевцов Г.В., Валиев Р.З., Семенова И.П., Клевцова Н.А., Кашапов М.Р., Классен Н.А., Михайлова И.А., Рогова Т.Ф. Медицинские изделия для челюстно-лицевой хирургии из наноструктурированного титана. West Kazakhstan Medical Journal. 2012. Vol. 35. No. 3.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Distribution of the average normal stress in the billet and location schemes of the areas selected for analysis: a – at ECAP (fourth pass); b – at extrusion

Download (260KB)
3. Fig.2. Distribution of the strain degree in the billet in the radial direction and location schemes of areas selected for analysis: a – at ECAP (fourth pass); b – at extrusion

Download (255KB)
4. Fig.3. Distribution of strain rate in the billet in the radial direction and location schemes of areas for analysis: a – at ECAP (fourth pass); b – at extrusion

Download (224KB)
5. Fig.4. Billets: a – initial after homogenization annealing; b – processed by ECAP and extrusion

Download (523KB)
6. Fig.5. Structure of the Mg-1%Zn-0.06%Ca alloy samples after: homogenization annealing (a), ECAP+E (b-f); b – general view, SEM; c – dislocation structure in coarse grains, TEM; d – view of fine grains, TEM; e – nanoparticles, TEM; f – diffraction pattern from the nanoparticles

Download (149KB)

Copyright (c) 2025 Botkin A.V., Volkova E.P., Khudododova G.D., Kulyasova O.B., Islamgaliev R.K., Valiev R.Z.