Formation of SiO2 photonic crystal films with a specified number of layers by controlled self-assembly methods

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Photonic crystal superlattices based on silicon dioxide microspheres have unique structural, mechanical, chemical and optical properties. Due to the cost-effective self-assembly technology of their formation and a wide range of possible applications in electronics, photonics and laser technology, they are one of the most promising materials in nanoengineering. To move to the practical use of developments in this area, it is necessary to learn how to obtain structures with specified parameters. Therefore, the goal of this work was to develop scientific and technical solutions that allow the controlled self-organization of microspheres into a film structure with a specified number of layers.

Full Text

Restricted Access

About the authors

E. V. Panfilova

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0001-7944-2765

Cand. of Sci. (Tech), Docent

Russian Federation, Moscow

V. A. Diubanov

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0009-0007-8569-3270

Postgraduate

Russian Federation, Moscow

A. R. Ibragimov

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru

Assistant

Russian Federation, Moscow

O. M. Ibragimova

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0002-7267-8254

Assistant

Russian Federation, Moscow

D. Yu. Shramko

Bauman Moscow State Technical University (National Research university)

Author for correspondence.
Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0002-0824-6772

Assistant

Russian Federation, Moscow

Hoa Van Cao

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0009-0009-0694-6124

Postgraduate

Russian Federation, Moscow

I. I. Yurasova

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0000-0002-0479-9441

Cand. of Sci. (Chemistry), Docent

Russian Federation, Moscow

A. N. Dvinyaninov

Bauman Moscow State Technical University (National Research university)

Email: panfilova.e.v@bmstu.ru
ORCID iD: 0009-0006-1938-6566

Student

Russian Federation, Moscow

References

  1. Bagdasarian A. et al. Technology of synthesis of opal matrix metamaterials. Advanced Materials Research. 2015. Vol. 1084. PP. 58–60.
  2. Белянин А.Ф. и др. Получение материалов с управляемыми магнитными и электрическими характеристиками как 3D-решеток нанокластеров мультиферроиков (титанатов и манганитов переходных элементов) на основе опаловых матриц. Прикладная физика и математика. 2018. № 1. С. 22–39.
  3. Panfilova E.V. et al. Laboratory complex for obtaining colloidal photonic-crystal structures. Part 1. NANOINDUSTRY. 2024. Т. 17. No. 3–4. С. 190–199. https://doi.org/10.22184/1993-8578.2024.17.3-4.190.198
  4. Panfilova E.V. et al. Laboratory complex for obtaining colloidal photic-crystal structures. Part 2. NANOINDUSTRY. 2024. Т. 17. No. 5. С. 268–275. https://doi.org/10.22184/1993-8578.2024.17.5.268.275
  5. Narayanan S. et al. Thin photonic crystal templates for enhancing the SERS signal: a case study using very low concentrations of dye molecules. Physica Scripta. 2024. Vol. 99. No. 3. P. 035512.
  6. Chen H. et al. Advances in photonic crystal research for structural color. Advanced Materials Technologies. 2025. Vol. 10. No. 4. P. 2400865.
  7. Li K.H., Choi H.W. InGaN light-emitting diodes with indium-tin-oxide photonic crystal current-spreading layer. Journal of Applied Physics. 2011. Vol. 110. No. 5. P. 3631797
  8. Lotito V., Zambelli T. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene. Journal of colloid and interface science. 2015. Vol. 447. PP. 202–210.
  9. William M.J. et al. Field emitters using inverse opal structures. Advanced functional materials. 2019. Vol. 29. P. 8.
  10. Chen K.Y. et al. Simple and Inexpensive Fabrication of Zero Mode Waveguides for High Concentration Single Molecule Microscopy. Journal of visualized experiments. 2020. No. 159. P. 61154.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. Synthesis of silicon dioxide particles: a – dependence of particle diameters and polydispersity on ammonia concentrations, and b – dependence of particle diameters on process duration

Download (122KB)
3. Fig.2. SEM images of silica films obtained by centrifugation: influence of rotation speed n and deposition duration t on film thickness for a diameter of microspheres of 240 nm: a – t = 6 min, n = 2500 rpm; b – t = 3 min, n = 2500 rpm; c – t = 2 min, n = 2000 rpm

Download (178KB)
4. Fig.3. SEM image of silica films obtained by electrophoresis from 240 nm diameter microspheres: a – chipped sample; b – continuous film over an area of 0.033 mm2

Download (227KB)
5. Fig.4. SEM images of silica films obtained by electrophoresis: the effect of pH and temperature T of the solution and potential U on the number of layers of microspheres with a diameter of 240 nm: а – pH = 9,3, T = 22 оС, U = 4 V; b – pH = 9,0, T = 40 оС, U = 10 V; c – pH = 8,7, T = 24 оС, U = 10 V

Download (423KB)
6. Fig.5. SEM images of silica films obtained by vertical lifting: а – top view; b, c – chipped samples: the effect of substrate movement speed v on the number of layers of 240 nm diameter microspheres: b – v = 0.5 mm/min; c – v = 0.4 mm/min

Download (245KB)

Copyright (c) 2025 Panfilova E.V., Diubanov V.A., Ibragimov A.R., Ibragimova O.M., Shramko D.Y., Cao H.V., Yurasova I.I., Dvinyaninov A.N.