Microstructure, mechanical properties, calculations of thermodynamic parameters and contributions to hardening of equiatomic TiNi alloy
- Authors: Churakova A.A.1,2
-
Affiliations:
- Institute of Molecule and Crystal Physics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences
- Ufa University of Science and Technology
- Issue: Vol 18, No 3-4 (2025)
- Pages: 222-232
- Section: Nanomaterials
- URL: https://journals.eco-vector.com/1993-8578/article/view/684397
- DOI: https://doi.org/10.22184/1993-8578.2025.18.3-4.222.232
- ID: 684397
Cite item
Abstract
In this paper we study the effect of multiple martensitic transformations (thermal cycling) on an equiatomic TiNi alloy in the coarse-grained and ultrafine-grained states, considers the thermodynamic aspect of the occurrence of martensitic transformations, changes in the entropy and energy of the process. The change in the dissipative energy determines the change in the hysteresis of transformations in the CG and UFG states. It should be noted that the UFG state is characterized by a larger increase in the elastic energy of martensite plates ∆EelM→A. The change in ∆Eeld energy is compared with the structure data obtained by the X-ray method and TEM. A greater increase in the density of dislocations in the CG state is also subject to an increase in the energy of defects. A slightly lower value of the dissipative energy Edis in the UFG state and a decrease in its values in the CG state after TC confirms the data on the transformation hysteresis. The paper also presents mechanical properties and calculation of contributions to hardening in the investigated states. The calculated and experimental values of yield strength in TiNi alloy are compared.
Full Text

About the authors
A. A. Churakova
Institute of Molecule and Crystal Physics – Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences; Ufa University of Science and Technology
Author for correspondence.
Email: churakovaa_a@mail.ru
ORCID iD: 0000-0001-9867-6997
Cand. of Sci. (Physics and Mathematics), Senior Researcher
Russian Federation, Ufa; UfaReferences
- Otsuka K., Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005. Vol. 50. Is. 5. PP. 511–678.
- Brailovski V., Prokoshkin S., Terriault P., Trochu F. Shape Memory Alloys: Fundamental, Modeling and Applications. Ecole de Technologie Superieure, Quebec, 2003.
- Kurdyumov G.V., Khandros L.G. On the thermoelastic equilibrium on martensitic transformations. Sov. Phys. Dokl. 1949. Vol. 66. PP. 211–214.
- Christian J.W. The Theory of Transformations in Metals and Alloys. Elsevier Science. Oxford, 2002.
- Xie Z.L., Sundqvist B., Hanninen H., Pietikainen J. Isothermal martensitic transformation under hydrostatic pressure in an Fe–Ni–C alloy at low temperatures. Acta Metall. Mater. 1993. Vol. 41. PP. 2283–2290.
- Rubanik V.V., Klubovich V.V., Rubanik Jr. The ultrasounds initiation of SME // J. Phys. I. V. 2003. Vol. 112. PP. 249–251. https://doi.org/10.1051/jp 4:2003876
- Belyaev S.P., Konopleva R.F., Nazarkin I.V., Razov A.I., Solovei V.L., Chekanov V.A. Neutron-irradiation-induced shape memory effect in a TiNi alloy. Phys. Solid State. 2007. Vol. 49. PP. 1969–1972.
- Inoue K., Enami K., Yamaguchi Y., Ohoyama K., Morii Y., Matsuoka Y., Inoue K. Magnetic-field-induced martensitic transformation in Ni2MnGa-based alloys. J. Phys. Soc. Jpn. 2000. Vol. 69. PP. 3485–3488.
- Salzbrenner R.J., Cohen M. On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1979. Vol. 27. PP. 739–748.
- Ortin J. Thermally induced martensitic transformations: theoretical analysis of a complete calorimetric run. Thermochimica Acta. 1987. Vol. 121. PP. 397–412.
- Ortin J., Planes A. Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall. 1988. Vol. 36. PP. 1873–1889.
- Ortin J., Planes A. Thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1989. Vol. 37. PP. 1433–1441.
- Wollants P., Roos J.R., Delaey L. Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog. Mater. Sci. 1993. Vol. 37. PP. 227–288.
- Liu Y., McCormick P.G. Influence of heat treatment on the internal resistance to the martensitic transformation in Ni–Ti. Proceedings of the International Conference on Martensitic Transformation (ICOMAT 92), Monterey Institute for Advanced Studies, Monterey. 1993. PP. 923–928.
- Liu Y., P.G. McCormick. Thermodynamic analysis of the martensitic transformation in NiTi-I. Effect of heat treatment on transformation behaviour. Acta Metall. Mater. 1994. Vol. 42. PP. 2401–2406.
- Liu Y., P.G. McCormick. Thermodynamic analysis of the martensitic transformation in NiTi-II. Effect of transformation cycling. Acta Metall. Mater. 1994. Vol. 42. PP. 2407–2413.
- Stroz D., Chrobak D. Effect of internal strain on martensitic transformations in NiTi shape memory alloys. Mater. Trans. 2011. Vol. 52. PP. 358–363.
- Resnina N., Belyaev S. Entropy change in the B2→B19' martensitic transformation in TiNi alloy. Therm. Acta. 2015. Vol. 602. PP. 30–35.
- Duerig T.W., Melton K.N., Stöckel D. Engineering aspects of shape memory alloys. London: Butterworth-Heinemann, 2013.
- Planes A., Macqueron J.L., Ortin J. Energy contributions in the martensitic transformation of shape memory alloys. Phil. Mag. Letters. 1988. Vol. 57. PP. 291–298.
- Валиев Р.З., Александров И.В. Объемные наноструктурные металлические материалы: получение, структура и свойства. Москва, Академкнига, 2007.
- Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. Bulk nanostructured materials from severe plastic deformation. Progress in Material Science. 2000. Vol. 45. PP. 103–189.
- Татьянин Е.В., Курдюмов В.Г., Федоров В.Б. Получение аморфного сплава TiNi при деформации сдвигом под давлением. ФММ. 1986. Т. 62. № 1. C. 133–137.
- Valiev R.Z., Gunderov D.V., Pushin V.G. Metastable nanostructured SPD TiNi alloys with unique properties. Journal Metastable and nanostructured materials. 2005. Vol. 24–25. PP. 7–12.
- Прокошкин С.Д., Хмелевская И.Ю., Добаткин С.В., Трубицына И.Б., Татьянин Е.В., Столяров В.В., Прокофьев Е.А. Эволюция структуры при интенсивной пластической деформации сплавов с памятью формы на основе TiNi. ФММ. 2004. Т. 97. № 6. С. 84–90.
- Valiev R.Z., Gunderov D.V., Lukyanov A.V., Pushin V.G. Mechanical behavior of nanocrystalline TiNi alloy produced by SPD. Journal of Materials Science. 2012. Vol. 47, No. 22. PP. 7848–7853.
- Hall E.O. The Deformation and Ageing of Mild Steel: III Discussion and Results. Proceedings of the Physical Society. Section B. 1951. Vol. 64 (9). PP. 747–753.
- Petch N.J. The Cleavage Strength of Polycrystals. Journal of the Iron and Steel Institute. 1953. Vol. 174. PP. 25–28.
- Sure G.N., Brown L.C. The mechanical properties of grain refined β- cuaini strain-memory alloys. Metall Trans A. 1984. Vol. 15. PP. 1613–1621.
- Montecinos S., Cuniberti A. Effects of grain size on plastic deformation in a β CuAlBe shape memory alloy. Materials Science and Engineering: A. 2014. Vol. 600. PP. 176–180.
- Montecinos S., Cuniberti A. Thermomechanical behavior of a CuAlBe shape memory alloy. Journal of Alloys and Compounds. 2008. Vol. 457. PP. 332–336.
- Churakova A.A., Gunderov D.V., Dmitriev S.V. Microstructure transformation and physical and mechanical properties of ultrafine-grained and nanocrystalline TiNi alloys in multiple martensitic transformations B2-B19'. Materialwissenschaft und Werkstofftechnik. 2018. Vol. 49(6). PP. 769–778.
- Churakova A.A., Gunderov D.V. Transformation of the TiNi alloy microstructure and the mechanical properties caused by repeated B2-B19′ martensitic transformations. Acta Metallurgica Sinica (English Letters). 2015. Vol. 28(10). PP. 1230–1237.
- Churakova A., Gunderov D.V. Microstructural and mechanical stability of a Ti-50.8 at.% Ni shape memory alloy achieved by thermal cycling with a large number of cycles. Metals. 2020. V. 10(2). 227.
- Приходько В.М., Петрова Л.Г., Чудина О.В. Металлофизические основы разработки упрочняющих технологий. М.: Машиностроение, 2003. 384 c.
- Orawan E. In dislocations in metals. New York: AIME, 1954.
- Гольдштейн М.И., Литвинов В.С., Бронфин Б.М. Металлофизика высокопрочных сплавов. Учебное пособие для вузов. М.: Металлургия, 1986.
- Churakova A.A., Gunderov D.V., Tolstov N.E., Magomedova D.K. Calculation of hardening contributions of the TiNi alloy undergoing martensitic transformations in a free state. IOP Conference Series Materials Science and Engineering. 2021. Vol. 1008(1). P. 012038.
Supplementary files
