Study of micro-scale surface deformations based on atomic force microscopy data analysis using the digital image correlation method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The applicability of the digital image correlation (DIC) method to atomic force microscopy (AFM) topographies under local loading is demonstrated. Technically pure Grade 4 titanium after equal-channel angular pressing according to the Conform scheme was investigated. Local deformation was formed by a microspherical diamond indenter (R = 2.5 μm). AFM scanning of the pre-/post-indentation region was performed with registration using a square scratch pattern (~1 µm). Pre-processing included artifact suppression and field equalization. Subpixel DIC over local windows provided recovery of the radial and tangential components of the displacement field. Continuous maps were obtained, capturing the propagation of disturbances beyond the contact zone and the features of local plastic deformation. The results confirm the technical feasibility and informativeness of DIC for quantitative mapping of displacements during nanoindentation of ultrafine-grained titanium.

Full Text

Restricted Access

About the authors

A. P. Fedotkin

Federal State Autonomous Educational Institution of Higher Education "Moscow Institute of Physics and Technology (National Research University)"

Email: useinov@mail.ru
ORCID iD: 0000-0003-3822-4811

Engineer

Russian Federation, Dolgoprudny

I. V. Laktionov

Federal State Autonomous Educational Institution of Higher Education "Moscow Institute of Physics and Technology (National Research University)"

Email: useinov@mail.ru
ORCID iD: 0000-0002-8576-3669

Engineer

Russian Federation, Dolgoprudny

G. Kh. Sultanova

Federal State Autonomous Educational Institution of Higher Education "Moscow Institute of Physics and Technology (National Research University)"; National Research Center "Kurchatov Institute"

Email: useinov@mail.ru
ORCID iD: 0000-0002-4770-5724

Engineer

Russian Federation, Dolgoprudny; Moscow

K. S. Kravchuk

National Research Center "Kurchatov Institute"

Email: useinov@mail.ru
ORCID iD: 0000-0002-9956-9939

Cand. of Sci. (Physics and Mathematics), Researcher

Russian Federation, Moscow

V. N. Reshetov

Federal State Autonomous Educational Institution of Higher Education "National Research Nuclear University MEPhI"

Email: useinov@mail.ru
ORCID iD: 0000-0002-8426-5991

Doct. of Sci. (Physics and Mathematics), Prof.

Russian Federation, Moscow

A. S. Useinov

Federal State Institution of Science Institute for High Pressure Physics of the Russian Academy of Sciences

Author for correspondence.
Email: useinov@mail.ru
ORCID iD: 0000-0002-9937-0954

Cand. of Sci. (Physics and Mathematics), Deputy Director

Russian Federation, Troitsk, Moscow

References

  1. Shojai S., Brömer T., Ghafoori E. et al. Assessment of corrosion fatigue in welded joints using 3D surface scans, digital image correlation, hardness measurements, and residual stress analysis. International journal of fatigue. 2023. Vol. 176. P. 107866.
  2. Pan B., Li K. A fast digital image correlation method for deformation measurement. Optics and Lasers in Engineering. 2011. Vol. 49. No. 7. PP. 841–847.
  3. Bhushan B., Koinkar V.N. Nanoindentation hardness measurements using atomic force microscopy // Applied physics letters. 1994. Vol. 64. No. 13. PP. 1653–1655.
  4. Romanowicz P.J., Szybiński B., Wygoda M. Assessment of digital image correlation effectiveness and quality in determination of surface strains of hybrid steel/composite structures. Materials. 2024. Vol. 17. No. 14. P. 3561.
  5. Pan B., Asundi A., Xie H., Gao J. Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements. Optics and Lasers in Engineering. 2009. Vol. 47. No. 7–8. PP. 865–874.
  6. Reddy B.S., Chatterji B.N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE transactions on image processing. 1996. Vol. 5. No. 8. PP. 1266–1271.
  7. Hebert J., Khonsari M. The application of digital image correlation (DIC) in fatigue experimentation: A review. Fatigue & Fracture of Engineering Materials & Structures. 2023. Vol. 46. No. 4. PP. 1256-1299.
  8. Федоткин А.П., Лактионов И.В., Гладких Е.В., Кравчук К.С. Применение алгоритмов машинного зрения для автоматического измерения микротвердости по Виккерсу. НАНОИНДУСТРИЯ. 2020. Т. 13. № 6. С. 392–400. https://doi.org/10.22184/1993-8578.2020.13.6.392.398
  9. Fedotkin A.P., Gladkikh E.V., Rusakov A.A., Useinov A.S. Analysis of the deformation behavior of materials during indentation using digital image processing methods. Theoretical Foundations of Chemical Engineering. 2024. Vol. 58. No. 3. PP. 661–665.
  10. Maslenikov I.I., Reshetov V.N., Useinov A.S. Mapping the elastic modulus of a surface with a NanoScan 3D scanning microscope. Instruments and experimental techniques. 2015. Vol. 58. No. 5. PP. 711–717.
  11. Кушнерева А.С., Лактионов И.В., Усеинов А.С. и др. Микросферические алмазные наконечники для исследования локальных механических свойств материалов методом инструментального индентирования // НАНОИНДУСТРИЯ. 2024. Т. 17. № 1. С. 44–49. https://doi.org/ 10.22184/1993-8578.2024.17.1.44.49
  12. Sun Y.F., Pang J.H.L. Nanoscale Deformation and Strain Analysis by AFM–DIC Technique. Nano-Bio-Electronic, Photonic and MEMS Packaging. 2021. PP. 519–533.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. AFM image of the surface before (a) and after (b) imprinting

Download (208KB)
3. Fig.2. Radial (a) and tangential (b) displacements map

Download (310KB)

Copyright (c) 2025 Fedotkin A.P., Laktionov I.V., Sultanova G.K., Kravchuk K.S., Reshetov V.N., Useinov A.S.