Coronavirus morphology study using atomic force microscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Atomic force microscopy allows high-resolution visualization of enveloped viruses, which include viruses of the Coronaviridae family, to study the nature of their adsorption on various surfaces, to measure the mechanical properties of viruses, to assess the effect of changes in the environment and temperature on morphology. Using force curves, it is possible to calculate the Young’s modulus of a viral particle, to assess the nature of the interaction between the envelope protein and the cellular receptor, and even to measure the strength of this interaction. All these capabilities not only allow us to characterize viruses, but also help prevent the spread of pathogens in the human population and choose the optimal treatment strategy.

Full Text

Restricted Access

About the authors

A. I. Akhmetova

Lomonosov Moscow State University; Advanced Technologies Center

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0002-5115-8030

Cand. of Sci. (Physics and Mathematics), Senior Researcher, Leading Specialist, Physical Department

Russian Federation, Moscow; Moscow

L. V. Kordyukova

Lomonosov Moscow State University

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0002-6089-1103

Doct. of Sci. (Biology), Leading Researcher, A.N. Belozersky Institute of Physico-Chemical Biology

Russian Federation, Moscow

I. V. Yaminsky

Lomonosov Moscow State University; Advanced Technologies Center

Author for correspondence.
Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-8731-3947

Doct. of Sci. (Physics and Mathematics), Prof., Director General, Physical Department

Russian Federation, Moscow; Moscow

References

  1. Kordyukova L.V., Shanko A.V. Covid-19: Myths and Reality. Biochemistry. 2021. Vol. 86. No. 7. PP. 964–984. https://doi.org/10.31857/S0320972521070022
  2. Akhmetova A.I., Yaminsky I.V. High resolution imaging of viruses: scanning probe microscopy and related techniques. Methods. 2022. Vol. 197. PP. 30–38. https://doi.org/10.1016/j.ymeth.2021.06.011
  3. Akhmetova A.I., Yaminsky I.V. FemtoScan Online software in virus research. NANOINDUSTRY. 2021. Vol. 14. No. 1(103). PP. 62–67. https://doi.org/10.22184/1993-8578.2021.14.1.62.67
  4. Kiss B., Kis Z., Pályi B., Kellermayer M.S.Z. Topography, spike dynamics, and nanomechanics of individual native SARS-CoV-2 virions. Nano Letters. 2021. Vol. 21. PP. 2675–2680. https://doi.org/10.1021/acs.nanolett.0c 04465
  5. Bagrov D.V., Glukhov G.S. et al. Structural characterization of β-propiolactone inactivated severe acute respiratory syndrome coronavirus 2 (sars-cov-2) particles. Microscopy Research and Technique. 2022. Vol. 85. No. 2. PP. 562–569. https://doi.org/10.1002/jemt.23931
  6. Cardoso-Lima R., Souza P.F.N. et al. SARS-CoV-2 Unrevealed: ultrastructural and nanomechanical analysis. Langmuir. 2021. Vol. 37(36). PP. 10762–10769. https://doi.org/10.1021/acs.langmuir.1c 01488
  7. Yao H., Song Y. et al. Molecular Architecture of the SARS-CoV-2 Virus. Cell. 2020. Vol. 183. PP. 730–738.e13. https://doi.org/10.1016/j.cell.2020.09.018
  8. Astuti I., Ysrafil Y. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr. Clin. Res. Re. V. 2020. Vol. 14. PP. 407–412. https://doi.org/10.1016/j.dsx.2020.04.020
  9. Xue Y., Ma Y. et al. Identification and measurement of biomarkers at single microorganism level for in situ monitoring deep ultraviolet disinfection process. IEEE Trans NanoBioscience. 2024. Vol. 23(2). 242–251. https://doi.org/10.1109/TNB.2023.3312754
  10. Tomás A.L., Reichel A. et al. UV-C irradiation-based inactivation of SARS-CoV-2 in contaminated porous and non-porous surfaces. J Photochem Photobiol B: Biol. 2022. Vol. 234. P. 112531. https://doi.org/10.1016/j.jphotobiol.2022.112531
  11. Celik U., Celik K. et al. Interpretation of SARS-CoV-2 behaviour on different substrates and denaturation of virions using ethanol: an atomic force microscopy study. RSC Ad. V. 2020. Vol. 10. P. 44079 https://doi.org/10.1039/D0RA09083B
  12. Lyonnais S., Hénaut M., Neyret A. et al. Atomic force microscopy analysis of native infectious and inactivated SARS-CoV-2 virions. Sci Rep. 2021. Vol. 11. P. 11885. https://doi.org/10.1038/s41598-021-91371-4
  13. Kordyukova L.V., Moiseenko A.V., Trifonova T.S., Akhmetova A.I., Gracheva A.V., Korchevaya E.R., Yaminsky I.V., Fayzuloev E.B. Study of cold-adapted attenuated SARS-CoV-2 mutants by transmission, cryoelectron and atomic force microscopy. Bulletin of Moscow University. Series 16. Biology. 2025, Vol. 80. In press.
  14. Lim K., Nishide G. et al. Millisecond dynamic of SARS-CoV-2 spike and its interaction with ACE2 receptor and small extracellular vesicles. Journal of Extracellular Vesicles. 2021. Vol. 10(14). P. e12170. https://doi.org/10.1002/jev2.12170
  15. Yang J., Petitjean S.J.L. et al. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nat Commun. 2020. Vol. 11. P. 4541. https://doi.org/10.1038/s41467-020-18319-6
  16. Kukushkin V., Ambartsumyan O. et al. Lithographic sers aptasensor for ultrasensitive detection of sars-cov-2 in biological fluids. Nanomaterials. 2022. Vol. 12. No. 21. P. 3854. https://doi.org/10.3390/nano12213854
  17. Kurmangali A., Dukenbayev K., Kanayeva D. Sensitive detection of SARS-CoV-2 variants using an electrochemical impedance spectroscopy based aptasensor. Int J Mol Sci. 2022. Vol. 23(21). P. 13138. https://doi.org/10.3390/ijms232113138

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. 2D and 3D images of coronaviruses on mica in air. Resonance mode, FemtoScan Online software

Download (570KB)
3. Fig.2. 2D image and section of coronavirus on mica in air. The particle height is about 50 nm. Resonance mode of AFM

Download (201KB)
4. Fig.3. 2D and 3D images and cross-section of the parent strain FEB2 (A, B) on graphite. The height of the particle is 60 nm

Download (290KB)
5. Fig.4. 2D and 3D images and cross-section of the ts-mutant F-F3 (A, B) on graphite. The height of the particle is 60 nm

Download (272KB)

Copyright (c) 2025 Akhmetova A.I., Kordyukova L.V., Yaminsky I.V.