About dimension of the atom

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In modern metrology, the size of an atom is determined statistically as half the interatomic distance in a crystal lattice, rather than through direct measurement of an isolated atom. Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are key tools for directly observing and measuring the geometry of individual atoms weakly bound to a substrate. The image obtained in STM is the spatial distribution of the electron density of the outer shell of the atom. Although STM is traditionally considered a more detailed method, AFM with modified probes can in some cases provide greater resolution and the ability to chemically identify atoms. In this article, we have collected data on the observation of atoms and their size measurements using scanning tunneling and atomic force microscopy.

Full Text

Restricted Access

About the authors

D. I. Yaminsky

Lomonosov Moscow State University

Author for correspondence.
Email: yaminsky@nanoscopy.ru
ORCID iD: 0009-0009-6370-7496

Post Graduate, Physical Department

Russian Federation, Moscow

A. I. Akhmetova

Lomonosov Moscow State University; Advanced Technologies Center

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0002-5115-8030

Cand. of Sci. (Physics and Mathematics), Senior Researcher, Leading Specialist, Physical Department

Russian Federation, Moscow; Moscow

A. I. Fedoseev

Lomonosov Moscow State University

Email: yaminsky@nanoscopy.ru
ORCID iD: 0009-0007-7282-1093

Doct. of Sci. (Physics and Mathematics), Prof., Physical Department

Russian Federation, Moscow

I. V. Yaminsky

Lomonosov Moscow State University; Advanced Technologies Center

Email: yaminsky@nanoscopy.ru
ORCID iD: 0000-0001-8731-3947

Doct. of Sci. (Physics and Mathematics), Prof., Director General, Physical Department

Russian Federation, Moscow; Moscow

References

  1. Cordero B. et al. Covalent radii revisited. Dalton Trans. 21. 2008. PP. 2832–2838. https://doi.org/10.1039/b801115j
  2. Crommie M.F. et al. Confinement of Electrons to Quantum Corrals on a Metal Surface. Science 262. 1993. PP. 218–220. https://doi.org/10.1126/science.262.5131.218
  3. Eigler D., Schweizer E. Positioning single atoms with a scanning tunnelling microscope. Nature. 1990. Vol. 344. PP. 524–526. https://doi.org/10.1038/344524a0
  4. Néel N., Kröger J. Orbital and Skeletal Structure of a Single Molecule on a Metal Surface Unveiled by Scanning Tunneling Microcopy. J. Phys. Chem. Lett. 2023. Vol. 14. No. 16. PP. 3946–3952. https://doi.org/10.1021/acs.jpclett.3c 00460
  5. Wallis T.M., Nilius N., Ho W. Erratum: Electronic Density Oscillations in Gold Atomic Chains Assembled Atom by Atom. Phys. Rev. Lett. 2002. Vol. 89. P. 236802. https://doi.org/10.1103/PhysRevLett.89.236802
  6. Sugimoto Y., Pou P. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature. 2007. Vol. 446. No. 7131. PP. 64–67. https://doi.org/10.1038/nature05530
  7. Wood J., Palms D. et al. Investigating Simulated Cellular Interactions on Nanostructured Surfaces with Antibacterial Properties: Insights from Force Curve Simulations. Nanomaterials (Basel). 2025. Vol. 15. No. 6. P. 462. https://doi.org/10.3390/nano15060462
  8. Gross L., Mohn F., Moll N., Liljeroth P., Meyer G. Science. 2023. Vol. 325. Iss. 5944. PP. 1110–1114. https://doi.org/10.1126/science.1176210
  9. Abilio I., Neel N. et al. Scanning tunneling microscopy using CO-terminated probes with tilted and straight geometries. Phys. Rev. B 110. 2024. P. 125422. https://doi.org/10.1103/PhysRevB.110.125422
  10. Lauhon L.J., Ho W. Direct Observation of the Quantum Tunneling of Single Hydrogen Atoms with a Scanning Tunneling Microscope. Phys. Rev. Lett. 2003. Vol. 85. Iss. 21. PP. 4566–4569. https://doi.org/10.1103/PhysRevLett.85.4566
  11. Yaminsky D., Yaminsky I. The standard of the nanometer. NANOINDUSTRY. 2009. Vol. 4. PP. 44–45.
  12. Akhmetova A.I., Terentyev A.D. et al. Diffraction grating as a means of metrological support of microscopy. NANOINDUSTRY. 2024. Vol. 17. No. 2. PP. 128–133. https://doi.org/10.22184/1993-8578.2024.17.2.128.133
  13. Akhmetova A.I., Sovetnikov T.O. et al. Quartz reference measure for scanning probe microscopy. NANOINDUSTRY. 2024. Vol. 17. No. 2. PP. 98–105. https://doi.org/10.22184/1993-8578.2024.17.2.98.105
  14. Heisenberg W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik. 1927. Vol. 43. PP. 172–198.
  15. Müller E.W. Das Auflösungsvermögen des Feldionenmikroskopes. Zeitschrift für Naturforschung A. 1956. Vol. 11. No. 1. PP. 88–94. https://doi.org/10.1515/zna-1956-0116
  16. Crewe A.V., Wall J., Langmore J. Visibility of single atoms. Science. 1970. Vol. 168. PP. 1338–1340. https://doi.org/10.1126/science.168.3937.1338
  17. Formanek H., Müller M. et al. Visualisation of single heavy atoms with the electron microscope. Naturwissenschaften 58. 1971. PP. 339–344. https://doi.org/10.1007/BF00602786

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. A – image of copper atom (left) and CO molecule (right), B – the same image built in FemtoScan Online software, C – three-dimensional image of copper atom, D – cross-section of the atom image at half-height, width at half-height 0.44 nm. Height units are relative. Scanning tunnelling microscopy. Original image [4]

Download (235KB)
3. Fig.2. Calibration of hysteresis in FemoScan Online software using TDG01 grating with a period of 278 × 50 nm

Download (181KB)
4. Fig.3. An image of the TDG01 lattice with a period of 278 × 50 nm and a cross section. The measure is a set of extended step structures on the surface of chalcogenide glass

Download (334KB)
5. Fig.4. The Blu-ray disc has a distinctive pattern of tracks of uniform height, which acts as a calibration standard

Download (249KB)
6. Fig.5. Sample scanning process when there is one atom at the tip. Model representation at the minimum value of the probe-sample contact force

Download (93KB)

Copyright (c) 2025 Yaminsky D.I., Akhmetova A.I., Fedoseev A.I., Yaminsky I.V.