Narrow linewidth laser source based on dfb laser and integrated silicon ring resonator

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We demonstrated the narrowing of the distributed feedback laser linewidth from 210 kHz to 150 Hz via self-injection locking with a photonic integrated circuit-based external Si resonator. This opens the prospects for compact narrow lasers for pure microwave signal generation.

Full Text

Restricted Access

About the authors

A. I. Vergules

Skolkovo Institute of Science and Technology

Author for correspondence.
Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-5673-4148

Intern Researcher

Russian Federation, Moscow

D. M. Zhigunov

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0003-1714-1208

Cand. of Sci. (Physics and Mathematics), Leading Researcher

Russian Federation, Moscow

D. S. Zemtsov

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-8774-3338

Cand. of Sci. (Physics and Mathematics), Senior Researcher

Russian Federation, Moscow

A. S. Smirnov

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-1573-1100

Engineer

Russian Federation, Moscow

A. K. Zemtsova

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0001-6072-9520

Junior Researcher

Russian Federation, Moscow

K. N. Garbuzov

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0003-3851-6339

Research Engineer

Russian Federation, Moscow

S. S. Kosolobov

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-1814-8877

Doct. of Sci. (Physics and Mathematics), Docent

Russian Federation, Moscow

V. P. Drachev

Skolkovo Institute of Science and Technology

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-6205-7497

Doct. of Sci. (Physics and Mathematics), Prof.

Russian Federation, Moscow

D. A. Korobko

Ulyanovsk State University

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-1582-7567

Cand. of Sci. (Physics and Mathematics), Leading Scientist

Russian Federation, Ulyanovsk

A. A. Fotiadi

Ulyanovsk State University

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-8086-8218

Cand. of Sci. (Physics and Mathematics), Leading Scientist

Russian Federation, Ulyanovsk

A. V. Ivanov

Polyus Research Institute of M.F. Stelmakh

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0009-0007-6420-9777

Head of department

Russian Federation, Moscow

M. A. Ladugin

Polyus Research Institute of M.F. Stelmakh

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-4086-7229

Doct. of Sci. (Physics and Mathematics), Head of the scientific and production complex

Russian Federation, Moscow

A. S. Dudin

Polyus Research Institute of M.F. Stelmakh

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0009-0006-8170-3083

2nd class Design Engineer

Russian Federation, Moscow

P. I. Lazarenko

National Research University of Electronic Technology (MIET)

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0003-4309-3481

Cand. of Sci. (Tech), Head of laboratory

Russian Federation, Moscow

V. V. Kovalyuk

University of Science and Technology MISIS

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-1529-4481

Cand. of Sci. (Physics and Mathematics), Head of laboratory

Russian Federation, Moscow

E. P. Kitsyuk

Scientific-Manufacturing Complex "Technological Centre"

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0002-4166-8408

Cand. of Sci. (Tech), Head of laboratory

Russian Federation, Moscow

V. V. Svetukhin

Scientific-Manufacturing Complex "Technological Centre"

Email: aleksandra.vergules@skoltech.ru
ORCID iD: 0000-0003-0831-9254

Doct. of Sci. (Physics and Mathematics), Director, Corresponding Member of RAS

Russian Federation, Moscow

References

  1. Panyaev I.S., Itrin P.A., Korobko D.A., Fotiadi A.A. Sub-100-Hz DFB Laser Injection-Locked to PM Fiber Ring Cavity. Journal of Lightwave Technology, 2024. Vol. 42. No. 8. PP. 2928–2937.
  2. Zou M., Shen K., Song Q., Dai Y., Xiao X., Sun Q., Yan Z. Sub-kHz-linewidth laser generation by self-injection locked distributed feedback fiber laser. Optics & Laser Technology. 2023. Vol. 169. PP. 110022–110022.
  3. Liang W.Y., Ilchenko V.S., Eliyahu D., Savchenkov A.A., Matsko A.B., Seidel D., Maleki L. Ultralow noise miniature external cavity semiconductor laser. Nature Communications. 2015. Vol. 6. No. 1. PP. 1–6.
  4. Jin W., Yang Q., Chang L., Shen B., Wang H., Leal M.A., Wu L., Gao M., Feshali A., Paniccia M., Vahala K.J., Bowers J.E. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nature Photonics. 2021. Vol. 15. No. 5. PP. 346–354.
  5. Zhang G., Cen Q., Hao T., Yin X., Zi X., Shi N., Li W., Zhu N., Li M. Self-Injection Locked Silica External Cavity Narrow Linewidth Laser. Journal of Lightwave Technology. 2023. Vol. 41. No. 8. PP. 2474–2483.
  6. Gundavarapu S., Brodnik G.M., Puckett M., Huffman T., Bose D., Behunin R., Wu J., Qiu T., Pinho C., Chauhan N., Nohava J., Rakich P.T., Nelson K.D., Salit M., Blumenthal D.J. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nature Photonics. 2018. Vol. 13. No. 1. PP. 60–67.
  7. Okoshi T., Kikuchi K., Nakayama A. Novel method for high resolution measurement of laser output spectrum. Electronics Letters. 1980. Vol. 16. No. 16. PP. 630–630.
  8. Derickson D. Fiber Optic Test and Measurement. 1998. Prentice Hall.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1. SEM images: (a) micro-ring resonator, (b) input-output diffraction grating, and (c) the gap between the waveguide and the micro-ring

Download (219KB)
3. Fig.2. Microphotography of a ring resonator with glued optical fibers for input and output radiation

Download (124KB)
4. Fig.3. (а) Flowchart of the DFL laser with a micro-ring external resonator on the PIC and a measuring self-homodyne interferometer with a delay. The optical line length from the laser to the PIC feedback is 7 meters; (b) a typical spectrum recorded at the output of t

Download (190KB)
5. Fig.4. Optical spectrum of a silicon microring resonator fabricated on the SoI platform

Download (158KB)
6. Fig.5. (a) Dependence of the output optical power of the laser on the pump current; (b) spectra measured by the self-Heterodyne interferometry method at different currents of the laser diode

Download (287KB)
7. Fig.6. Spectra measured by the self-homodyne interferometry method in free mode of the laser diode and in the frequency locking mode; approximation of the spectrum by the Voigt function (b) in the free mode of the laser diode and (c) in the frequency locking mode

Download (236KB)
8. Fig.7. Prototype of narrowband laser in the integrated design

Download (335KB)

Copyright (c) 2025 Vergules A.I., Zhigunov D.M., Zemtsov D.S., Smirnov A.S., Zemtsova A.K., Garbuzov K.N., Kosolobov S.S., Drachev V.P., Korobko D.A., Fotiadi A.A., Ivanov A.V., Ladugin M.A., Dudin A.S., Lazarenko P.I., Kovalyuk V.V., Kitsyuk E.P., Svetukhin V.V.