Микроструктурные и фазовые изменения в сплаве TiNi после электрохимических коррозионных испытаний

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В представленной статье проведены комплексные исследования микроструктуры и фазового состава сплава до и после электрохимических коррозионных испытаний в растворах 1М HCl, 3M HCl, 1M H2SO4, 3M H2SO4. Проведенные исследования показали, что коррозионный процесс в сплаве Ti49.1Ni50.9 в случае электрохимической коррозии протекал на всех образцах и во всех растворах в виде появления питтингов, а также с продуктами коррозии при испытании в растворах H2SO4 с разной концентрацией, в случае 3 M HCl продукты коррозии также были обнаружены на поверхности образцов. Было обнаружено изменение характера микроструктуры в крупнозернистом состоянии в 3M-растворах, в то время как в ультрамелкозернистом состоянии таких изменений не обнаружено.

Полный текст

Доступ закрыт

Об авторах

А. А. Чуракова

Институт физики молекул и кристаллов – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук; Уфимский университет науки и технологий

Автор, ответственный за переписку.
Email: churakovaa_a@mail.ru
ORCID iD: 0000-0001-9867-6997

к.ф.-м.н., ст. науч. сотр.

Россия, г. Уфа; Уфа

Э. И. Исхакова

Институт физики молекул и кристаллов – обособленное структурное подразделение Уфимского федерального исследовательского центра Российской академии наук; Уфимский университет науки и технологий

Email: churakovaa_a@mail.ru
ORCID iD: 0009-0001-0907-6146

лаборант-исследователь

Россия, г. Уфа; Уфа

Список литературы

  1. Otsuka K. Physical metallurgy of Ti–Ni-based shape memory alloys / K. Otsuka X. Ren // Prog. Mater. Sci. 2005. V. 50. Iss. 5. PP. 511–678.
  2. Yamauchi K. Shape Memory and Superelastic Alloys: Technologies and Applications / K. Yamauchi I. Ohkata K. Tsuchiya S.Miyazaki. Woodhead Publishing, Cambridge, UK. 2011. 232 p.
  3. Lecce L. Shape Memory Alloy Engineering for Aerospace, Structural and Biomedical Applications. Concilio. Butterworth-Heinemann, Oxford, UK. 2015. 934 p.
  4. Zhang J., Somsen T. Simon X., Ding S., Hou S., Ren X., Ren G., Eggeler K., Otsuka J. Leaf-like dislocation substructures and the decrease of martensitic start temperatures: a new explanation for functional fatigue during thermally induced martensitic transformations in coarse-grained Ni-rich Ti–Ni shape memory alloys Sun // Acta Mater. 2012. V. 60. PP. 1999–2006.
  5. Bowers M.L., Chen M., De Graef P.M., Anderson M.J., Mills Scr. Characterization and mode¬ling of defects generated in pseudoelastically deformed NiTi microcrystals Mater. 2014. V. 78.79. PP. 69–72.
  6. Маршаков И.К., Угай Я.А., Вигдорович В.И. Фазовые превращения интерметаллических соединений под действием растворов электролитов // Электрохимия.1966. Вып. 2. С. 254–258.
  7. Мейснер Л.Л. , Сивоха В.П., Лотков А.И., Бармина Е.Г. Коррозионные свойства сплавов квазибинарного разреза TiNi TiAu в биохимических растворах // Физика и химия обработки материалов. 2006. № 1. С. 78–84.
  8. Abramova P.V., Korshunov A.V., Lotkov A.I., Mejsner L.L., Mejsner S.N., Baturin A.A., Kopylov V.I., and Semin V.O. The Influence of Nitinol Structure on Oxidation Features when Heated and on Corrosion Resistance in Chloride-Containing Solutions, Izvestiya Tomskogo politekhnicheskogo universiteta (in Russian), 2013, Vol. 323. No. 3. P. 88.
  9. Устинская Т.Н. Состав, электрохимические и защитные свойства анодных пленок на интерметаллиде TiNi / Электрохимия. 1987. Вып. 23. С. 254–259.
  10. Коссый Г.Г., Трусов Г.Н., Гончаренко Б.А., Михеев В.С. Коррозионно–электрохимические характеристики интерметаллидов титана с никелем в кислых растворах // Защита металлов. 1978. Т. 14. № 6. С. 662–666.
  11. Степанова Т.П., Красноярский В.В., Томашов Н.Д., Дружинина И.П. Влияние никеля на анодное поведение титана в речной воде // Защита металлов. 1978. Вып.14. № 2. С. 169–171.
  12. Дерягина О.Г., Палеолог Е.Н., Акимов А.Т., Дагуров В.Г. Электрохимическое поведение анодно-окисленных Ni-Ti-сплавов в сульфатных растворах, содержащих хлор-ионы // Электрохимия. 1980. Т. 16. Вып. 12. С. 1828–1833.
  13. Tan L., Dodd R.A., Crone W.C. Corrosion and wear corrosion behavior of NiTi modified by plasma source ion implantation // Biomaterials. 2003. Vol. 24. P. 3931–3939.
  14. Okazaki Y. Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Aland V.Y. Okazaki S. Rao Y // Biomaterials. 1998. Vol. 19. PP. 1197–1215.
  15. Hofman A. Classes of materials used in medicine // Biomaterials Science Academic Press. 1996. PP. 37–50.
  16. Shabalovskaya S.A. Surface, corrosion, and biocompatibility aspects of nitinol as an implant material // Bio-Medical materials and Engineering. 2002. Vol. 12. PP. 69–109.
  17. Chenglong Liu, Deping Hu, Jun Xu, Dazhi Yang, Min Qi. In vitro electrochemical corrosion behaviour of functionally graded diamound-like carbon coatings on biomedical Nitinol alloy // Thin Solid Films. 2006. Vol. 496. PP. 457–462.
  18. Shevchenko N., Pham M.-T., Maitz M.F. Studies of surface modified NiTi alloy // Applied Surface Science. 2004. Vol. 235. PP. 126–131.
  19. Vandenkerckhove R., Chandrasekaran M., Vermaut P., Portier R., Delacy L. Corrosion behaviour of a supere-lastic Ni-Ti alloys // Materials Science and Engineering. 2004. Vol. 378. PP. 532–536.
  20. Denton M., Earthman J.C. Corrosion evaluation of wear tested nitinol wire // Materials Science and Engineering. 2005. Vol. 25. PP. 276–281.
  21. Xiao Xu. Shock synthesis and characterization of nanostructured NITINOL alloy/ Naresh Thadhani // Materials Science and Engineering A. 2004. V. 384. PP. 194–201.
  22. Primak O., Bogdanski D. Morphological characterization and vitro biocompatibility of a porous nickel-titanium alloy // Biomaterials. 2005. Vol. 26. PP. 5801–5807.
  23. Tan L. Corrosion and wear- corrosion beraviour of NiTi modified by plasma source ion implantation // Biomaterials. 2003. Vol. 24. PP. 3931–3939.
  24. Starosvetsky D., Gotman I. Corrosion behaviour of titanium nitride coated Ni-Ti shape memory surgical alloy // Biomaterials. 2001. Vol. 22. PP. 1853–1859.
  25. Казарин В.И., Томашов Н.Д., Михеев В.С., Гончаренко Б.А. Влияние никеля на электрохимические и коррозионные свойства титана в кислых растворах хлористого натрия // Защита металлов. 1976. Т. 12. № 3. С. 268–271.
  26. Шмаков М., Михеев В.С. Исследование коррозионной стойкости металлического соединения гамма Ti -Ni в растворах серной кислоты при 20°С // Химико-фармацевтический журнал. 1973. № 9. С. 51–53.
  27. Шмаков М. Исследование скорости коррозии титано никелевых сплавов в водном растворе серной кислоты при 20°С // Химико-фармацевтический журнал. 1973. № 10. С. 52–55.
  28. Мовчан Б.А., Ягупольская Л.П. Влияние примесей, деформации и отжига на электрохимические свойства никеля // Защита металлов. 1969. Вып.5, № 5. С. 515–516.
  29. Чернышова Ю.В. Закономерности влияния объемной поверхностной структуры на электрохимическую коррозию имплантов из сплавов на основе титана и никелида титана / Автореферат диссертации кандидата технических наук. М., 2008.
  30. Балянов А.Г. Высокоскоростное анодное растворение и взаимодействие с внешними средами металлов с ультрамелкозернистой структурой для разработки технологических процессов формообразования. Автореферат диссертации кандидата технических наук. Уфа, 2002.
  31. Ionita D., Caposi M., Demetrescu I., Ciuca S., Gherghescu I.A. Effect of artificial aging conditions on corrosion resistance of a TiNi alloy // Materials and Corrosion. 2015. Vol. 66, no. 5. PP. 472–478.
  32. Yan X.J., Yang D.Z. Corrosion resistance of a laser spot-welded joint of NiTi wire in simulated human body fluids // J. Biomed. Mater. Res. A. 2006. Vol. 77. PP. 97–102.
  33. Yan X.J., Yang D.Z., Liu X.P. Corrosion behavior of a laser-welded NiTi shape memory alloy // Mater. Charact. 2007. Vol. 58. PP. 623–628.
  34. Man H.C., Cui Z.D., Yue T.M. Corrosion properties of laser surface melted NiTi shape memory alloy // Scr. Mater. 2001. Vol. 45. PP. 1447–1453.
  35. Chan C.W., Man H.C., Yue T.M. Susceptibility to stress corrosion cracking of NiTi laser weldment in Hanks’ solution // Corrosion Sci. 2012. Vol. 57. PP. 260–269.
  36. Chan C.W., Man H.C., Yue T.M. Susceptibility to environmentally induced cracking of laser-welded NiTi wires in Hanks’ solution at open-circuit potential // Mater. Sci. Eng. A. 2012. Vol. 544. PP. 38–47.
  37. Chan C.W., Man H.C., Yue T.M. Effect of post-weld heat-treatment on the oxide film and corrosion behaviour of laser-welded shape memory NiTi wires // Corrosion Sci. 2012. Vol. 57. PP. 158–167.
  38. Liu K.T., Duh J.G. Grain size effects on the corrosion behavior of Ni50.5Ti49.5 and Ni45.6Ti49.3Al5.1 films // J. Electroanal. Chem. 2008. Vol. 618. PP. 45–52.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис.1. Оптическое изображение микроструктуры сплава Ti49,1Ni50,9 в крупнозернистом (a) и ультрамелкозернистом (b) состоянии

3. Рис.2. ПЭМ-изображения микроструктуры сплава Ti49,1Ni50,9 в КЗ-состоянии (a, b), УМЗ-состоянии (c, d)

Скачать (519KB)
4. Рис.3. Поляризационные кривые сплава Ti49.1Ni50.9 в растворе 1 M HCl (a), 3 M HCl (б), в растворе 1 M H2SO4(в), 3 M H2SO4 (г), синяя кривая – КЗ-состояние, красная кривая – УМЗ-состояние

Скачать (871KB)
5. Рис.4. Фотографии поверхности образцов сплава после электрохимических испытаний сплава Ti49.1Ni50.9 в крупнозернистом (a, c) и ультрамелкозернистом (b, d) состояниях в растворах 1 M (a, b) и 3 M H2SO4 (c, d)

Скачать (886KB)
6. Рис.5. Фотографии поверхности образцов сплава после электрохимических испытаний сплава Ti49.1Ni50.9 в крупнозернистом (a, c) и ультрамелкозернистом (b, d) состояниях в растворах 1 M (a, b) и 3 M HCl (c, d)

Скачать (877KB)
7. Рис.6. ПЭМ-изображения микроструктуры сплава Ti49,1Ni50,9 после коррозионных испытаний в растворе 3 M H2SO4 в крупнозернистом (a, b) и ультрамелкозернистом (c, d) состояниях

Скачать (561KB)
8. Рис.7. ПЭМ-изображения микроструктуры сплава Ti49,1Ni50,9 в после коррозионных испытаний в растворе 3 M HCl в крупнозернистом (a, b) и ультрамелкозернистом (c, d) состояниях. Участок микроструктуры, содержащий частицы (e)

9. Рис.8. Рентгенограммы сплава Ti49.1Ni50.9 после коррозионных испытаний в растворах 1 M и 3 M H2SO4 и 1 M и 3 M HCl в крупнозернистом (a) и ультрамелкозернистом состоянии (b)

Скачать (679KB)

© Чуракова А.А., Исхакова Э.И., 2024