Influence of plastic deformation on structure and properties of bioresorbable zinc alloy Zn-0.8Li-0.1Mn
- Authors: Sirazeeva A.R.1, Khasanova A.R.1, Kulyasova O.B.1, Aksenov D.A.2, Bolshakov B.O.1
-
Affiliations:
- Ufa University of Science and Technology
- Institute of Molecule and Crystal Physics UFRS RAS
- Issue: Vol 17, No 7-8 (2024)
- Pages: 408-416
- Section: Nanomaterials
- URL: https://journals.eco-vector.com/1993-8578/article/view/642488
- DOI: https://doi.org/10.22184/1993-8578.2024.17.7-8.408.416
- ID: 642488
Cite item
Abstract
This paper presents the results of a study of the effect of plastic deformation on the structure and properties of zinc alloy Zn-0.8Li-0.1Mn. The evolution of the structure has been characterised by scanning electron microscopy (SEM) and EBSD methods. The stress-relative elongation diagrams obtained under uniaxial tension are discussed.
Full Text

About the authors
A. R. Sirazeeva
Ufa University of Science and Technology
Author for correspondence.
Email: sirazeeva.arina@mail.ru
ORCID iD: 0000-0003-3841-2169
Postgraduate
Russian Federation, UfaA. R. Khasanova
Ufa University of Science and Technology
Email: sirazeeva.arina@mail.ru
ORCID iD: 0009-0008-8497-5580
Master
Russian Federation, UfaO. B. Kulyasova
Ufa University of Science and Technology
Email: sirazeeva.arina@mail.ru
ORCID iD: 0000-0002-1761-336X
Cand. of Sci. (Tech), Docent
Russian Federation, UfaD. A. Aksenov
Institute of Molecule and Crystal Physics UFRS RAS
Email: sirazeeva.arina@mail.ru
ORCID iD: 0000-0002-2652-2646
Junior Researcher
Russian Federation, UfaB. O. Bolshakov
Ufa University of Science and Technology
Email: sirazeeva.arina@mail.ru
ORCID iD: 0000-0002-5945-7123
Cand. of Sci. (Tech), Senior Researcher
Russian Federation, UfaReferences
- Geetha M., Singh A.K., Asokamani R., Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants A review // Prog. Mater. Sci. 2009. Vol. 54. PP. 397–425.
- Okazaki Y., Gotoh E. Comparison of metal release from various metallic biomaterials in vitro // Biomaterials. 2005. Vol. 26. PP. 11–21.
- Ridzwan M., Shuib S., Hassan A., Shokri A., Ibrahim M.M. Problem of stress shielding and improvement to the hip implant designs: a review // J. Med. Sci. 2007. Vol. 7. PP. 460–467.
- Goodman S.B., Yao Z., Keeney M., Yang F. The future of biologic coatings for orthopaedic implants // Biomaterials 2013. Vol. 34. PP. 3174–3183.
- Ulery B.D., Nair L.S., Laurencin C.T. Biomedical applications of biodegradable polymers // J. Polym. Sci., Part B: Polym. Phys. 2011. V. 49. P. 832 864.
- Liu H., Slamovich E.B., Webster T.J. Less harmful acidic degradation of poly (lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition // Int. J. Nanomed. 2006. Vol. 1. PP. 541–545.
- Zhao D., Huang S., Lu F., Wang B., Yang L., Qin L., Yang K., Li Y., Li W., Wang W. Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head // Biomaterials. 2016. Vol. 81. PP. 84–92.
- Windhagen H., Radtke K., Weizbauer A., Diekmann J., Noll Y., Kreimeyer U., Schavan R., Stukenborg-Colsman C., Waizy H. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study // Biomed. Eng. Online. 2013. Vol. 12. PP. 62–71.
- Lee J.W., Han H.S., Han K.J., Park J., Jeon H., Ok M.R., Seok H.K., Ahn J.P., Lee K.E., Lee D.H. Long-term clinical study and multiscale analysis of in vivo 22 biodegradation mechanism of Mg alloy // Proc. Natl. Acad. Sci. U. S. A. 2016. Vol. 113. PP. 716– 721.
- Thormann U., Alt V., Heimann L., Gasquere C., Heiss C., Szalay G., Franke J., Schnettler R., Lips K.S. The biocompatibility of degradable magnesium interference screws: an experimental study with sheep // BioMed Res. Int. 2015. Vol. 2015. PP. 1–15.
- Yang H., Jia B., Zhang Z., Qu X., Li G., Lin W., Zhu D., Dai K., Zheng Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications // Nat. Commun. 2020. Vol. 11. PP. 1–16.
- Ma Z.J., Yamaguchi M. Alternation in bone components with increasing age of newborn rats: role of zinc in bone growth // J. Bone Miner. Metab. 2000. Vol. 18. PP. 264–270.
- Seo H.J., Cho Y.E., Kim T., Shin H.I., Kwun I.S. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3-E1 cells // Nutr. Res. Pract. 2010. Vol. 4. PP. 356–361.
- Pelton A. The Li-Zn (Lithium-Zinc) System // J. phase equilibra. 1991. Vol. 12. PP. 42–45.
- Tarnovskii I.Ya., Pozdeyev A.A., Lyashkov V.B. Deformation of Metals During Rolling. Pergamon Press. 1965. P. 340.
- Krajňák T., Minárik P., Gubicza J., Máthis K., Kužel R., Janeček M. Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy // Mater. Charact. 2017. Vol. 123. PP. 282–293.
- Aksenov D.A., Fakhretdinova E.I., Asfandiyarov R.N., Raab A.G., Sharipov A.E., Shishkunova M.A., Sementeeva Yu.R. Changes in the structure, mechanical and corrosion properties of the Mg–Zn–Zr system alloy subjected to equal channel angular pressing // Frontier Materials & Technologies. 2024. Vol. 1. PP. 9–17.
- Straumal B., et al. The effect of equal-channel angular pressing on the microstructure, the mechanical properties, and biodegradation behavior of magnesium alloyed with Ag and Gd // Crystals. 2020. Vol. 10. No. 10. P. 918.
- Gollapudi S. Grain size distribution effects on the corrosion behaviour of materials // Corros. Sci. 2012. Vol. 62. PP. 90–94.
- Choi H.Y., Kim W.J. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy // Journal of the Mechanical Behavior of Biomedical Materials. 2015. Vol. 51. PP. 291–301.
Supplementary files
