Optical stabilization of power amplifiers for fiber-optic communication lines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Thepossibilityofopticalstabilization of the gain of a remotely pumped erbium fiber amplifier (ROPA) and a distributed SRS amplifier have been investigated. The basis of the optical sta- bilization systems under consideration is a linear spectral- selective resonator with generation at one of the operating wavelengths of the amplifier. It is shown that for the ROPA proposed system makes it possible to maintain the gain con- stant when changing temperature, number and power of channels. For a distributed SRS amplifier, a constant gain is provided when the number of channels changes, and con- stant output power when losses in the line change.

Full Text

Restricted Access

About the authors

A. Yu. Igumenov

ООО «Т8 НТЦ»

Author for correspondence.
Email: igumenov.au@mipt.ru

к.ф.-м.н., доцент МФТИ, инженер-исследователь

Russian Federation

S. N. Lukinykh

ООО «Т8 НТЦ»; МГУ им. М. В.Ломоносова

Email: igumenov.au@mipt.ru

инженер 1-й категории ООО "Т8 НТЦ", инженер МГУ им. М. В.Ломоносова

Russian Federation

O. E. Nanii

ООО «Т8 НТЦ»; МГУ им. М. В.Ломоносова

Email: igumenov.au@mipt.ru

д.ф.-м.н., заместитель генерального директора по науке ООО "Т8", профессор МГУ им. М. В.Ломоносова

Russian Federation

V. N. Treschikov

ООО «Т8 НТЦ»; Фрязинский филиал - ФГБУН Институт радиотехники и электроники имени В. А. Котельникова РАН

Email: igumenov.au@mipt.ru

д.т.н., генеральный директор ООО "Т8", с.н.с. Фрязинского филиала ИРЭ им. В.А.  Котельникова РАН

Russian Federation

References

  1. Akasaka Y. et al. Hybrid Amplification Approach Towards Wideband Optical Communications // J. Lightwave Technol. 2023. Vol. 41. No. 3. PP. 815−821.
  2. Wang Y. et al. Ultra-Broadband Bismuth-Doped Fiber Amplifier Covering a 115-nm Bandwidth in the O and E Bands // J. Light Technol. 2021. Vol. 39. No. 3. PP. 795−800.
  3. Конышев В.А. и др. Тенденции и перспективы развития волоконно-оптических систем передачи информации // Квантовая электроника. 2022. Т. 52. № 12. С. 1102−1113.
  4. Леонов А.В. и др. Усилители на основе вынужденного комбинационного рассеяния в оптических системах связи // Прикладная фотоника. 2014. Т. 1. № 1. С. 27−50.
  5. Sun Y. et al. Fast power transients in WDM optical networks with cascaded EDFAs // Electron. Lett. 1997. Vol. 33. No. 4. PP. 313−314.
  6. Bakar A.A.A. et al. Single-stage gain-clamped L-band EDFA with C-band ASE saturating tone // Laser Physics. 2009. Vol. 19. No. 5. PP. 1026−1029.
  7. Aozasa S. et al. Novel Gain Spectrum Control Method Employing Gain Clamping and Pump Power Adjustment in Thulium-Doped Fiber Amplifier // J. Lightwave Technol. 2008. Vol. 26. No. 10. PP. 1274−1281.
  8. Vijayakumar N. et al. A feed forward method for stabilizing the gain and output power of an erbium-doped fiber amplifier // Microwave Opt. Technol. Lett. 2009. Vol. 51. PP. 2156−2160.
  9. Bianciotto A. et al. EDFA gain transients: experimental demonstration of a low cost electronic control // IEEE Photonics Technol. Lett. 2003. Vol. 15. PP. 1351−1353.
  10. Dung J. et al. Gain stability in a distributed Raman amplifier for a wavelength-division multiplexing system // Optical Engineering. 2010. Vol. 49. No. 4. P. 045003.
  11. Ahuja B. et al. Statistical Analysis for Semiconductor Optical Amplifier for 16 × 10Gbps and 8 × 10Gbps DWDM Transmission Systems having In-line Compensating Fiber // International Journal of Industrial Electronics and Electrical Engineering. 2020. Vol. 10. No 7. PP. 265−272.
  12. Mustafa F.M. et al. A reduced power budget and enhanced performance in a wdm system: a new fbg apodization function // Opt. Quantum Electron. 2022. Vol. 54. No. 471. PP. 1−15.
  13. Olonkins S. et al. Investigation of in-line distributed Raman amplifiers with co and counter-propagating pumping schemes // Progress in Electromagnetic Research Symposium, Shanghai, 2016. PP. 3773−3777.
  14. Zhang T. et al. Distributed fiber Raman amplifiers with incoherent pumping // IEEE Photonics Technology Letters. 2005. Vol. 17. No. 6. PP. 1175−1177.
  15. Putrina J. Comparison of discrete and distributed in-line Raman amplifiers in a 16 channel DWDM transmission system // 2017 Progress in Electromagnetics Research Symposium − Fall, Singapore, 2017. PP. 236−241.
  16. Islam M.N. Raman Amplifers for Telecommunications 2: Sub-systems and Systems. Springer, 2007. 428 p.
  17. Liang T.C. et al. All-optical gain-clamped L-band erbium-doped fiber amplifier with two feedback-loop lasing wavelengths // Opt. Eng. 2005. Vol. 44. No. 11. P. 115001.
  18. Игуменов А.Ю. и др. Полностью оптическая стабилизация коэффициента усиления волоконного усилителя с удаленной оптической накачкой // Квантовая электроника. 2023. Т. 53. № 6. С. 484−489.
  19. Wei H. et al. Use of Bragg gratings to achieve gain clamping in distributed fiber Raman amplifiers // Proc. SPIE, Optical Fibers and Passive Components. 2004. Vol. 5279. PP. 73−76.
  20. Игуменов А.Ю. и др. Оптическая стабилизация распределенного волоконного усилителя на вынужденном комбинационном рассеянии // Журнал технической физики. 2024. Т. 94. № 4. С. 652−657.
  21. МСЭ-Т. G.694.1: Spectral grids for WDM applications: DWDM frequency grid. [Электронный ресурс]. URL: https://www.itu.int/rec/T-REC-G.694.1-202010-I/en (дата обращения 14.03.2024).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1.

Download (209KB)
3. Fig.2.

Download (146KB)
4. Fig.3.

Download (111KB)
5. Fig.4.

Download (133KB)
6. Fig.5.

Download (204KB)

Copyright (c) 2024 Igumenov A.Y., Lukinykh S.N., Nanii O.E., Treschikov V.N.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies