Methods of Interference Reduction for IEEE 802.11 Communication Networks on High-Speed Railways

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A review of techniques and methods in Wi-Fi technology, which allow its application to railway communication tasks, is presented. The work is carried out within the framework of the grant "Research of methods to increase the interference immunity of 4G/5G/6G, Wi-Fi, IoT mobile communication systems using signal-code constructions for complex channels in accordance with the Telecommunications Industry Development Strategy 2035" of the National Research University Higher School of Economics.

Full Text

Restricted Access

About the authors

S. L. Portnoy

Высшая школа экономики; ООО "РадиоГигабит"

Author for correspondence.
Email: sportnoy@hse.ru

д.т.н., проф. Московского института электроники и математики им. А.Н. Тихонова; научный консультант

Russian Federation, Москва; Нижний Новгород

S. E. Nikitin

Высшая школа экономики; ООО "РадиоГигабит"

Email: snikitin@hse.ru

старший преподаватель Московского института электроники и математики им. А.Н. Тихонова; младший инженер-исследователь

Russian Federation, Москва; Нижний Новгород

N. S. Klyuev

Высшая школа экономики; ООО "РадиоГигабит"

Email: nsklyuev@edu.hse.ru

магистрант; младший инженер-исследователь

Russian Federation, Москва; Нижний Новгород

D. V. Raklanov

Высшая школа экономики; ООО "РадиоГигабит"

Email: dvraklanov@edu.hse.ru

студент; стажер

Russian Federation, Москва; Нижний Новгород

References

  1. CFM. Cooperates with Huawei to Set an Example of FRMCS-based Railway Communication Reconstruction. [Электронный ресурс]. URL: https://e.huawei.com/en/case-studies/industries/railway/2023-mozambique-frmcs (дата обращения 18.07.2024).
  2. Миньковский М.Г. Сети Trackside в метро мы умеем строить лучше всех в мире // ПЕРВАЯ МИЛЯ. 2022. № 1. С. 36–40.
  3. IEEE Standard for Information Technology Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Amendment 1: Enhancements for High-Efficiency WLAN. (IEEE Std 802.11ax-2021). 19 May. 2021
  4. Minkovsky M.G., Portnoy S.L., Nikitin S.E., Klyuev N.S. and Sakhautdinov S.R. Modelling Approach to Convergence Trackside Railway Networks // 2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Vyborg, 2024. PP. 1–7.
  5. Портной С.Л., Никитин С.Е., Клюев Н.С., Антошкин Г.Д., Сахаутдинов Ш.Р. Разработка LLS-симулятора сети связи ВСЖМ на основе технологии 802.11ax // ПЕРВАЯ МИЛЯ. 2024. № 6. C. 62–68.
  6. PP. 5G; NR; User Equipment (UE) Radio Transmission and Reception; Part 4: Performance Requirements. 3GPP TS 38.101-4, ver. 18.6.0, Release 18. Feb. 2025.
  7. Борисович С.Ф., Дубровко А.Ю. Моделирование систем синхронизации приемника IEEE 802.11AH в MATLAB // Радиоэлектроника. Наносистемы. Информационные технологии. 2020. Т. 12. № 2. С. 275–286.
  8. IEEE Standard 802.11-2020. IEEE Standard for Information Technology — Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks — Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. 6 Feb. 2021.
  9. Terry J., Heiskala J. OFDM Wireless LANs: A Theoretical and Practical Guide. Indianapolis, IN: Sams, 2003.
  10. Huang Y., Yuan L., Gong W. Research on IEEE 802.11 OFDM Packet Detection Algorithms for Household Wireless Sensor Communication // Applied Sciences. 2022. Vol. 12. No. 7. P. 7232.
  11. Ninkovic V., Valka A., Dumic D. and Vukobratovic D. Deep Learning-Based Packet Detection and Carrier Frequency Offset Estimation in IEEE 802.11ah // IEEE Access. 2021. Vol. 9. PP. 99853–99865.
  12. Sourour E., El-Ghoroury H., McNeill D. Frequency Offset Estimation and Correction in the IEEE 802.11a WLAN // IEEE 60th Vehicular Technology Conference, 2004. Los Angeles, CA. PP. 4923–4927.
  13. Jimenez V.P.G., Garcia M.J.F., Serrano F.J.G., Armada A.G. Design and implementation of synchronization and AGC for OFDM-based WLAN receivers // IEEE Transactions on Consumer Electronics. 2004. Vol. 50. No. 4. PP. 1016–1025.
  14. van Zelst A., Schenk T.C.W. Implementation of a MIMO OFDM-based Wireless LAN System // IEEE Transactions on Signal Processing. 2004. Vol. 52. No. 2. PP. 483–494.
  15. Van de Beek J., Edfors O., Sandell M., Wilson S., Borjesson P. On Channel Estimation in OFDM Systems // 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century. Chicago, IL, 1995. PP. 815–819.
  16. Zhang Q., Zhao J. Channel Estimation for High-Speed Railway Wireless Communications: A Generative Adversarial Network Approach // Electronics. 2023. Vol. 12. No. 7. P. 1752.
  17. Чирков О.Н., Ромащенко М.А., Чепелев М.Ю. Современные методы оценки канала радиосвязи в условиях многолучевости // Вестник Воронежского государственного технического университета. 2019. Т. 15. № 3. С. 68–73.
  18. Milos J., Polak L., Slanina M. Performance Analysis of IEEE 802.11ac/ax WLAN Technologies Under the Presence of CFO // 2017 27th International Conference Radioelektronika. Brno. PP. 1–4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Demonstration of the HST scenario [6]

Download (58KB)
3. Fig. 2. Example of multipath propagation occurrence

Download (60KB)
4. Fig. 3. Demonstration of the effect of interference between subcarriers on signal reception

Download (79KB)
5. Fig. 4. Representation of OFDM signal transmission as a set of independent channels

Download (33KB)
6. Fig. 5. General structure of PPDU frame

Download (85KB)
7. Fig. 6. Schematic of PPDU reception on the receiver side

Download (58KB)
8. Fig. 7. HE PPDU format frame structure including midamble

Download (61KB)
9. Fig. 8. Scheme of metric m formation for determining the beginning of signal transmission

Download (31KB)
10. Fig. 9. Structure diagram of the LTF field

Download (21KB)
11. Fig. 10. Dependence of carrier frequency offset (CFO) on signal-to-noise ratio (SNR) at 10% bit error rate (BER) in IEEE 802.11ac/ax standards (SISO, 20 MHz channel width, MCS8 (256QAM)) [18]

Download (84KB)

Copyright (c) 2025 Portnoy S.L., Nikitin S.E., Klyuev N.S., Raklanov D.V.